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Abstract. The paper presents the results of the classification of handwritten digits from the 

MNIST database using the Hopfield network. A strong correlation of training binary patterns 

does not allow the use of the standard Hebbian learning method. The application of the Storkey 

learning method increases the capacity of associative memory, and the optimized pattern 

binarization threshold and pattern size reduce the correlation of patterns. By optimizing these 

parameters, a network achieved a classification accuracy of 56.2% on a set of validation data 

used for network training. The selection of the optimal binarization threshold for a separate set 

of test images increased the classification accuracy to 61.5%. 

1. Introduction 

A long history of the research on artificial neural networks originates from the simulation of an artificial 

neuron by McCallock and Pitts in 1943 [1]. The rapid development of cybernetics and computer science 

has led to the emergence of a wide variety of neuron models and architecture of neural networks [2]. 

Some types of neural networks were created by copying complex biological processes [3,4], while other 

networks used simple models of neurons with the necessary functionality [5,6]. One of the most 

important functions of higher nervous activity is the storage of information, which can be implemented 

using recurrent artificial networks [7,8]. Feedback functionality allows the implementation of own 

memory within recurrent networks, and this memory is used during network training and operation [9]. 

The memory of a recurrent network has associative properties, which allow the mapping of one of the 

stored associations to any input action. A Hopfield network, described in 1982 [10], is considered to be 

the first network of this type. It consists of one layer of neurons, and each neuron is recurrently connected 

with the remaining neurons of the network. Network neurons take binary values (1 and -1) and have a 

stepwise activation function. The main advantage of the Hopfield network is the possibility of training 

the network (calculating coupling weights) in one action using patterns from the training set and the 

Hebbian rule [10]. To check a test pattern, the state of network neurons is set in accordance with the 

value of this test pattern. The network sequentially updates the state of neurons until their state matches 

one of the training patterns. In this way, the association between the test pattern and the training set is 

built. 

Recently, Hopfield networks have come into focus due to actively developing oscillatory neural 

networks (ONN) [11], which can be implemented in the form of electronic circuits with a fully 

connected array of micro- and nano-oscillators. Feedback in oscillators is implemented through the 

processes of their interaction. Information in the ONN can be encoded by the frequency of the oscillators 
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[12], by the value of synchronization [13], or by the phase difference between the signals of the 

oscillators [14].  

A network becomes similar to the Hopfield network, if two conditions are applied. First, the 

information can be represented in binary form, for example, the phase can take values 0 and π. Second, 

each oscillator can affect the state of the associated oscillator depending on the coupling coefficient. For 

example, the oscillations of the associated oscillator can be in phase or out of phase. Hoppensteadt and 

Izhikevich [15] proposed this analogy for the first time based on the PLL (Phase lock loop) array. The 

idea was continued in [16–18], where options for the implementation of the Hopfield network using a 

small number of harmonic oscillators on discrete elements and a nonlinear input signal were presented. 

In a number of studies, relaxation oscillators based on bistable elements were used to implement the 

network [11,14]. These studies build a mathematical analogy between the dynamics of the array of 

oscillators and the dynamics of changes in the states of neurons in the Hopfield-like network. Thus, the 

design of the ONN functionality can be simplified using Hopfield network modelling. 

The pattern classification and recognition, which is one of the most important tasks of machine 

learning, can be resolved using the Hopfield network and subsequently transferred to a hardware 

implementation based on ONN. Using the Hopfield network, the implementation task consists of two 

parts: the first part is to develop hardware that implements mathematical similarity, and the second part 

is to model the classification process based on the Hopfield network. Attempts to implement the network 

hardware have been made earlier [16,17,19–21], while the available solutions to the classification 

problem are based on simplified examples [22–25]. The current literature lacks the application of 

Hopfield networks to classify handwritten characters from standardized databases. In this study, we 

demonstrate the capabilities of Hopfield networks on the classic example of classification of handwritten 

digit’s images from the MNIST database [26]. 

2. Network architecture 

The MNIST database is a sample of 70 thousand digitized images of handwritten digits. Each image has 

a size of 28 by 28 pixels and is presented in grayscale. Each image pixel can take values from 0 (black) 

to 255 (white). The image database is divided into two parts: a training part (60 thousand samples) and 

a test part (10 thousand samples). The former is used for training and network validation, and the latter 

is for assessing the accuracy of the classification of a trained network. 

As a pre-processing of images of digits with different tilt angles, we used the deskewing method. 

The method allows adjusting the linear and angular displacement of the image based on the brightness 

distribution of the pixels in the picture. In the processed image, the digit is located in the center of the 

picture and has a normal tilt (the tilt angle corresponds to ~ 90 °). Figure 1 demonstrates the images 

before processing and after the deskewing method application. 

 

 

Figure 1. Image of handwritten digits from the MNIST database before (a) and after (b) processing 

by the deskewing method. 

 



MIP: Engineering-2020

IOP Conf. Series: Materials Science and Engineering 862 (2020) 052048

IOP Publishing

doi:10.1088/1757-899X/862/5/052048

3

 

 

 

 

 

Next, the images were averaged from the training sample for each class (digit). To calculate the 

weight matrix of the Hopfield network, the obtained two-dimensional images were represented in the 

form of one-dimensional arrays 𝐏mem𝑖
 using string concatenation (where i = 1..10 is index of the 

memorized pattern). As Hopfield networks operate with binary values (+1 or -1), one-dimensional arrays 

𝐏mem𝑖
 must be binarized. The initial values of each element of the array 𝐏mem𝑖

 belong to the range from 

0 to 255, and the following equation is used to convert them to binary format: 

 𝑥𝑚𝑒𝑚𝑖,𝑗
= {

1, 𝑖𝑓 𝑝𝑚𝑒𝑚𝑖,𝑗
≥ 𝑝th

−1, 𝑖𝑓 𝑝𝑚𝑒𝑚𝑖,𝑗
< 𝑝th 

,  (1) 

where 𝑝𝑚𝑒𝑚𝑖,𝑗
 is the j-th (j = 0..784) element of the array 𝐏mem𝑖

, and pth is the binarization threshold. 

Initially, the middle of the range (pth = 127) is chosen as the threshold. The resulting binary one-

dimensional vectors 𝐗mem𝑖
, corresponding to digits from 0 to 9 and called patterns, are used to calculate 

the weight matrix W according to the Hebbian learning rule: 

 𝑾 =
1

𝑁
∙ ∑ 𝑿𝑚𝑒𝑚𝑖

∙ 𝑿𝑚𝑒𝑚𝑖
𝑇

𝑁

𝑖=1
 , (2) 

where N is the number of memorized patterns. Classification in the Hopfield network is an iterative 

process of changing the state of network neurons, when the classified vector 𝐗test must be converted to 

the closest pattern 𝐗mem𝑖
 from the training set. Mathematically, this process is represented as a recursive 

equation for multiplying the vector 𝐗s, which describes the s-th state of the network, by the weight 

matrix W: 

 𝐗𝑠+1 =  𝜃 (𝐗𝑠 ∙ 𝐖), (3) 

where θ is the matrix activation function of network neurons. As θ, a threshold function is used in 

Hopfield networks that converts each element of the array to 1 if the element is non-negative, or to -1, 

otherwise. The initial state of the network is set equal to the classified vector 𝐗0 = 𝐗test. In case of 

correct operation of the network, its state after several iterations will correspond to one of the memorized 

patterns 𝐗mem𝑖
. For each memorized pattern, the following equation must be fulfilled: 

 𝐗mem𝑖
 = 𝜃 (𝐗mem𝑖

∙ 𝐖), (4) 

that is, all memorized patterns must be stable network states. In some cases, condition (4) is not 

satisfied and the initial state of the network with 𝐗0 = 𝐗mem𝑖
 will be unstable. As a result, after several 

iterations, the system will transition to a new state called the spurious pattern. Typically, this behavior 

occurs when recording a large number of patterns. When using the Hebbian learning rule, the network 

can operate correctly when writing no more than 0.138∙M patterns into it, where M is the number of 

pattern elements equal to the number of neurons [27]. 

When classifying images from the MNIST database, the number of pixels in the image is 

M = 28∙28 = 784, which allows recording no more than 108 patterns. However, in the course of this 

study, a problem was discovered that the network does not operate correctly when inputting 10 recorded 

𝐗mem𝑖
 patterns. Probably, it can be explained by the strong correlation between the patterns [28,29]. 

Because of this problem, the number of patterns that can be written to the network drops significantly, 

and the correct operation of the network was possible when recording no more than 2 patterns. There 

are two ways to minimize this effect: modifying the network training methodology (calculating the 

weight matrix W) and reducing the correlation between 𝐗mem𝑖
. 

The capacity of associative memory in the Hopfield network could be increased by several other 

training methods [30,31]. The Storkey method [30] is a modification of the Hebbian learning rule and 

demonstrates the best results. In the method, when calculating the matrix W, the local field form is used, 

where the change in the synoptic connection between neurons depends only on the state of the neurons 
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connected by this connection. The equation for calculating the weight matrix by the Storkey method can 

be expressed through the recurrence formula: 

𝐖𝑖 = 𝐖𝑖−1 +
1

𝑁
𝐗mem𝑖

∙ 𝐗𝑚𝑒𝑚𝑖
T −

1

𝑁
. 𝐗mem𝑖

∙ (𝐖𝑖−1 ∙ 𝐗mem𝑖
)T −

1

𝑁
. (𝐖𝑖−1 ∙ 𝐗mem𝑖

) ∙ 𝐗𝑚𝑒𝑚𝑖
T . (5) 

During network training using the Storkey method, the correct operation of the network was observed 

when already 4 patterns were recorded, or the associative memory capacity was doubled in comparison 

with the Hebbian method. 

Further optimization of the network was directed to decrease the correlation between the 𝐗mem𝑖
 

patterns by evaluating the similarity of all pairs of recorded vectors 𝐗mem𝑖
. To evaluate the similarity 

of patterns, we used the Hamming distance Dh, which for binary vectors is the number of positions 

(pixels) that differ between patterns from each pair. The Hamming distance calculated for each pair of 

patterns is presented in figure 2. The most similar digits are “4” and “9” (Dh = 46), “7” and “9” (Dh = 

58), “3” and “5” (Dh = 74), “4” and “7” (Dh = 76). 

 

 

 

 

 

 

 

 

 

Figure 2. The value of the 

Hamming distance Dh between 

all pairs of patterns. 

In the analysis of the similar positions between the digits, areas of maximum similarity were found 

that are located on the borders of the patterns. This area is a black frame around the digit (see figure 1), 

which does not carry useful information, but increases the similarity of 𝐗mem𝑖
 patterns. When cropping 

this frame, Dh will not change, since the number of different pixels will remain unchanged. At the same 

time, the difference in the patterns 𝐗mem𝑖
 depends on the length of the vector M. Therefore, to evaluate 

the similarity of the vectors, it is necessary to calculate the relative Hamming distance dh = Dh / M. In 

addition, the binarization threshold pth can influence the similarity of vectors. Binarization threshold 

determines which pixels will correspond to the white silhouette of a digit, when moving to a black-and-

white image. As a metric for the similarity of patterns, we use the average dh_avg and the minimum dh_min 

relative distance between all pairs of patterns. Figure 3a demonstrates a plot of dh_avg versus pth for 

various values of M. With a decrease in M from 784 (28x28) to 144 (12x12), there is a clear increase in 

the maximum value of dh_avg with a shift of the maximum towards larger pth values. When M decreases, 

the number of patterns that the network can remember is linearly reduced. Based on figure 3a, the 

optimal value of the pattern size lies in the range from 12x12 to 14x14. In order to choose from two 

options for cropping the pattern, figure 3b demonstrates the dependences of dh_avg and dh_min on pth at 

M = 196 and M = 144. The dh_avg plots from pth have maxima at pth = 82 for M = 196 and pth = 108 for 

M = 144, which are significantly offset from the dh_min maxima. Therefore, when choosing the optimal 

pth value, it is necessary to find the value of the combination of these parameters. For example, we used 

the extremum of the product function dh_avg ∙ dh_min. For M = 196, the optimal value is pth = 86, and for 

M = 144, the optimal value is pth = 123. 
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(a) 

 
(b) 

Figure 3. The dependence of dh_avg on pth for various values of M (a) and the dependence of dh_avg 

and dh_min on pth for M = 196 and M = 144 (b). 

Using the specified parameters and the Storkey training method, expression (4) is satisfied, and the 

recorded patterns correspond to the stable states of the Hopfield network. Despite a slightly larger dh_avg 

value at M = 144, a significant decrease in the number of neurons at M = 196 leads to a large number of 

spurious patterns that reduce the classification accuracy. Therefore, we demonstrate the results of the 

network at M = 196 and pth = 86. Figure 4 presents images of training patterns. 

 

 

Figure 4. The training patterns used to calculate the weight matrix W. 

3. Image classification 

Validation of the classification results was performed on 10000 randomly selected samples from the 

training dataset. During validation, the parameters are fine-tuned before checking the classification 

accuracy on the test sample. A deskewing procedure was performed for each input image, then the image 

was cropped to a size of 14x14 pixels. Next, the image was converted to black and white, with the 

binarization threshold pth = 86, and the test vector 𝐗𝐭𝐞𝐬𝐭 was formed by concatenating the strings. The 

neurons of the network were set to the initial state corresponding to the test vector, and the network 

iteratively converged to a stable state, according to equation (3). After that, the classification was 

checked for correctness. The image was considered successfully recognized, if the final network state 

corresponded to one of the memorized patterns, and the digits depicted on the pattern and test vector 

coincided. Figure 5 presents examples of the correct and incorrect recognition of handwritten digits 

indicating the source image and the evolution of the network state during the process. The digit ‘3’ was 

recognized correctly in just two iterations of the network. The digit ‘9’ was incorrectly classified by the 

network as the digit ‘1’. When classifying the digit ‘8’, the network went into a state that does not 

correspond to any of the recorded patterns (spurious pattern). In assessing the classification accuracy, 

the transition to a spurious pattern was considered an incorrect result. 
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Figure 5. Examples of correct and incorrect classification of images from the MNIST database. 

  

The result of operation on validation data demonstrated the classification accuracy of 56.2%. The 

accuracy depends on the binarization threshold p’th of the classified digits. Figure 6 reflects the 

dependence of classification accuracy using validation data on p’th. The maximum value of the 

classification accuracy reached 59.8% at p’th = 38. For optimal classification, the binarization threshold 

of the test images should differ from the binarization threshold of the patterns (pth = 86). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The dependence of the 

classification accuracy on the 

binarization threshold of classified 

images p’th. 

 

Table 1 presents the percentages of the correct and incorrect classification, and the percentage of 

occurrence of spurious patterns at p’th = 38. For the results of incorrect classification, the most common 

erroneous result is indicated. 
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Table 1. Classification results of the MNIST database for single digits. 

Digit 

Percent of 

correct 

classification, 

% 

Percent of 

incorrect 

classification, 

% 

The most common 

erroneous result 

Percent of spurious 

patterns, % 

0 69 5.49 6 25.5 
1 90.2 0.35 7 9.49 
2 73.7 4.44 1 21.9 
3 67.7 8.72 2 23.5 
4 0 16.1 6 83.9 
5 52.4 9.04 6 38.5 
6 80.4 3.94 1 15.7 
7 69.6 4.86 2 25.5 
8 57.3 13.3 3 29.3 
9 29.9 25.4 7 44.8 

 

All test digits have a different percentage of correct classification. The digits ‘1’, ‘2’, ‘6’, ‘7’ have 

the highest classification probabilities, because, most likely, their patterns are strong attractors of the 

network. This assumption confirms the fact that these digits are the most likely erroneous result of the 

classification of other digits. The digit ‘1’ is most accurately recognized, and this is, probably, due to 

the small variability of its way of writing. Digits ‘9’ and ‘4’ have the smallest average relative Hamming 

distance with respect to other digits, so they have the largest percentage of incorrect classification. The 

digit ‘4’ has never been correctly classified, and most of the erroneous results relate to spurious patterns. 

The most common spurious pattern differs from the memorized pattern by only 1 pixel. It means that 

both of these patterns are attractors of the network, but the spurious pattern is a stronger attractor, and 

in many cases the network converges to it. We decided to replace the original pattern of the digit ‘4’ 

(figure 7) and re-calculate the weight matrix W and validate the network. 

 

 

Figure 7. Image of original and modified digit ‘4’ patterns. 

After changing the pattern, the accuracy of the classification of the digit ‘4’ increased to 15.8% (see 

table 2), while the accuracy of the classification of the digit ‘9’ fell to 27.2% because of an increase in 

the similarity of the patterns of the digits ‘4’ and ‘9’. As a result, the accuracy of the network 

classification during validation increased to 61%. 

Next, we tested the network on a test sample, which consists of 10000 images. The classification 

accuracy on the test data was 61.5%, it is close to the results of the classification of validation data. The 

distribution of classification accuracy of individual digits is similar to table 2. The classification 

accuracy of digits ‘4’ and ‘9’ was 16.9% and 27.6%, respectively.  
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Table 2. Classification results of the MNIST database for single digits after changing the 

pattern of digit ‘4’. 

Digit 

Percent of 

correct 

classification, 

% 

Percent of 

incorrect 

classification, 

% 

The most common 

erroneous result 

Percent of spurious 

patterns, % 

0 68.6 5.49 6 25.9 
1 90.8 0.35 7 8.87 
2 73.5 4.84 1 21.7 
3 66.9 8.33 2 24.8 
4 15.8 16.3 6 67.9 
5 52.8 8.57 6 38.6 
6 80.7 3.94 1 15.4 
7 69.5 5.89 2 24.6 
8 56.7 13.5 3 29.9 
9 27.2 31.1 7 41.7 

 

The results indicate this network can be used to recognize handwritten digits, but the obtained 

classification accuracy is significantly lower compared to other direct distribution neural networks 

(multilayer, convolutional, etc.) [26]. The accuracy of network classification can be improved by using 

pre-processing of the input data and by the correct selection of memorized patterns. Spurious patterns 

introduce a significant error, and the amount of spurious patterns can be minimized using diluted 

Hopfield networks [32]. In such networks, part of the coefficients in the coupling matrix W is reset to 

zero, and it reduces the probability of the creation of a spurious pattern [33]. A set of networks with 

fewer recorded patterns can be used, but in this case, a mechanism is needed to resolve situations, when 

the networks in the set will provide different results. One of such mechanisms may be the winner-takes-

all principle, when the result of the network that converges to the pattern most quickly is selected. 

4. Conclusion 

The study demonstrates the possibility of recognizing handwritten digits from the MNIST database 

using Hopfield networks. The deskewing operation was used as the image pre-processing, which allows 

reducing the angle of inclination and linear displacement of images. The memorized patterns were 

calculated by averaging the brightness of pixels for each digit, and then, the patterns were binarized. 

Using the standard Hebbian training method, the network does not operate correctly because of the 

strong correlation between memorized patterns. Alternatively applied the Storkey method allows the 

capacity of the associative memory of the network to increase when writing highly correlated patterns 

to it. The correlation between the patterns was reduced in two ways: by changing the size of the pattern 

M due to cropping of external pixels and by changing the binarization threshold pth. At the optimal 

values of these parameters, M = 196 (14x14 pixels) and pth = 86, the network operated correctly after 

writing all 10 patterns. The accuracy of the network classification on validation data was 56.2%. The 

use of the optimal binarization threshold of test images p’th = 38 and a small correction of the training 

pattern for the digit ‘4’ increase the classification accuracy during validation up to 61%. Operating the 

network on test data, which were not used in the network training and validation, demonstrated the 

classification accuracy of 61.5%. Although this accuracy value is lower compared to the results of other 

modern neural networks [26], it can be improved with the help of a diluted Hopfield network or a 

competitive operation of a set of networks. 
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