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Abstract. The solution of many applied problems is reduced to solving optimization problems 

with the objective function of a linear-fractional functional of “-1” order. For example, 

economic tasks, tasks of placing objects, tasks about assignments, layout, production planning, 

an informative description of objects, medical tasks, etc. The article developed a new method 

for solving the unconditional optimization problem with the objective function of the discrete-

fractional-linear functional of the “-1” order. As well as certain optimality conditions for the 

chosen solution, a theorem is formed and proved, which is the basis of the proposed method. 

1. Introduction 

Many applied problems are solved by casting into a discrete optimization problem. And the applied 

task itself requires obtaining effective solutions in minimum time and cost. Moreover, with an increase 

in the number of variables, the solution of the problem becomes more complicated. In practice, 

obtaining such an optimal solution to the problem is time consuming. Some existing optimization 

methods do not always give the expected solution, but they provide close solutions to the expected. 

In addition, if there are errors in the initial data of the problem, the estimate of the optimal solution 

is reduced, and the mathematical model itself, as a rule, is only an approximate expression of the 

original problem. Good feasible solutions to the optimization problem are not only limited by practical 

value, they are also an important element for many methods of finding the optimal solution, for 

example, the method of boundaries and branches. 

Most of the practical tasks of human activity relate to discrete optimization problems, and also in 

decision-making practice one has to deal with problems, many of which are NP-tasks. Currently, many 

methods, algorithms and software have been developed for solving such problems [1-6]. 

Many applied problems are solved on the basis of continuous optimization, and many are reduced 

to solving linear fractional discrete optimization problems. For example, tasks about assignments, 

layout, production planning, an informative description of objects, etc. 

For an informative description of objects use the indicators of the object, time and cost of 

measuring signs and others. To obtain an informative set of signs, it is necessary to maximize the 

criteria of informativeness, and to find non-informative ones, minimize it. Fractional-linear 

programming problems play a special role not only in the informative description of objects, but also 

https://nuu.uz/eng
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in planning, layout, etc. For example, in planning problems, the relevance of linear-fractional 

programming problems lies in the possibility of finding the optimal production solution in any limited 

time and volume of production. Among the planning tasks, individual economic indicators that need to 

be extremized, for example, cost, profitability, etc., become more important. In such cases, the 

admissible conditions of such problems and the admissible conditions of an ordinary linear problem 

may not differ, and the objective function is expressed as a fraction, i.e. linear-fractional functionals of 

the “-1” order, in the numerator and denominator of which are linear algebraic sums of variables 

1 2, ,..., nx x x - the desired plans for the release of manufactured goods [8].  

The article proposes the fastest method for solving such problems in which the objective function is 

a linear-fractional functional of “-1” order. 

2. Basic concepts and notations  

The discrete optimization problem consists of finding the maximum (or minimum) of the function  , 

which is defined on a finite (or countable) discrete set  . 

( ) ,x extr x →   

where the function   is the objective function, and the elements of the set   are feasible 

solutions. 

Let a discrete set be given: 1 2 ... N=     ,  , 1,
iip i N=  = , 

1

N

i

i

p
=
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 a linear-fractional function of the “-1” order, where  

, 1, ,i ix i N =
1 1

0
N N

i i j j

i j

x x 
= =

  . 

Based on the functionals defined as simple homogeneous zero-order functionals, an optimization 

method was proposed in [8]. However, at present, only brute-force and gradient methods exist for 

solving discrete optimization of linear fractional functionals of various orders. But to determine 

informative features based on similar functionals, methods were proposed in [9–14]. To fill this gap, 

the method of discrete optimization of linear fractional functionals of “-1” order is proposed below.  

Definition 1.   is called a homogeneous function of k-order if for ( ), 0R     the equality 

( ) ( )1 2 1 2, ,..., , ,...,k

k kx x x x x x     =  holds. 

3. Formulation of the problem  

Let the objective function be given 

( ) 1
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,    (1) 

which is a homogeneous “-1” order, i.e. here  1k = − . 

Let us consider in the set   the following optimization problem 
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Let real numbers , ,a b c  be given as well as satisfying the conditions , , 0d e f   and 
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Let , , , 1,i i i i ix y x y i N   =  be selected. 

We introduce the following notation: 

( )

( )
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1 1 1
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If in the properties, accept , , , , ,t t ta b c d e f C  =  =  =  =  =  = , then for 

( )1,t t N =  taking into account  

0;

0,

0,

t

t

tC
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one of these properties will take place. 

Given vector ( )1 2, ,..., , , 1,N i ix x x x x i N=  = . 
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Theorem 1. In order for the selected vector x  to provide an optimal solution to problem (2), it is 

necessary and sufficient that there are ,t ta b =  =   and tc =   ( )1,t N=  that satisfy the 

conditions of property 1. 

Proof. 

Adequacy. Let 1 2 ... Nx      be selected. Then the expressions (arbitrary amounts)  
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can be reduced to the following form:  
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For 
* * *, ,A B C  we have the corresponding equalities  
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Here 
mA ,

mB  and 
mC  are the sums of 

( ) ( )
,

k k

t t    and 
( )k

t , respectively, satisfying the 

conditions of the m-property ( )1,2m = . 

By the hypothesis of the theorem, the sums 
1 1,A B  and 

1C  are equal to zero. So, 

* * *
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It follows that 
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Thus, we have  
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and the value ( ), , ,
A

x
BC

    =  corresponding to the selected x  is not optimal. 

If problem (2) is solved by exhaustive search, then the number of interchanges is 
1

N

i

i

m
=

 , and in the 

proposed method the number of interchanges is much less, i.e. 
1

N

i

i

m
=

 . 

4. Experimental research and solving a practical problem 

A computational experiment was carried out for 5 discrete sets 1 2 5, ,..., .    Elements of these sets 

are real and integer numbers generated on a computer. 

The cardinalities of these sets are: 

1 1 2 2 3 3100, 200, 150,p p p=  = =  = =  = 4 4 5 5400, 150p p=  = =  = , and the 

coefficients of the linear fractional functional are given as  
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Based on the data presented, the following discrete optimization problem is solved:  
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The solution of the problem was carried out on the basis of the proposed method and exhaustive 

search and compared their results. In the proposed method, the optimal solution was found in 1050 

steps and the results of the proposed method and the exhaustive search method completely coincided. 

In the exhaustive search method, the number of steps was 
106 10 . In addition, some of the problems 

presented and solved in [7] were solved on the basis of the proposed method by converting them into a 

discrete optimization problem, and the results completely coincided with the results of the known 

methods of unconditional discrete optimization. 

Using the proposed method, the following practical problem was solved, associated with finding 

informative features of objects based on the relationship of features. In this problem, we studied vital 

clinical informative signs of coronary heart disease, where the object of the study is the pathology of 

the ventricle of the heart, the condition of which is divided into 3 groups: myocarditis infarction - the 

first class of objects ( )1P , middle condition - the second class of objects 2( )P , angina pectoris - third 

class of objects 3( )Р . 

The initial data were formulated in the form of 3 classes. A class is a type of disease, in each class 

the number of signs is the same, i.e. equal to 82. 

To determine the informative features, it is necessary to solve the following optimization problem 

( ) 1

1 1

, , max,

1,82, , 1,82.

i i

i

i i j j

i j

i i

x

x

x x

x i
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=  =



   

On the basis of the “k-nearest neighbours” method, each object belongs to its class. When 

analysing the results, the optimal  was found, which is 58= . The selected informative set of 

features ensured 100% accuracy in classifying the objects of the training sample.  

5. Conclusion 

To solve the problem of unconditional discrete optimization of linear-fractional functionals of the “-1” 

order, the optimality conditions for the chosen solution are determined. Based on these optimality 

conditions, a theorem is formed and proved that is the basis for the proposed method. The proposed 

method provided the best results for the selection of an informative set of features. In addition, the 

proposed method can be applied to solve many applied problems that can be reduced to problems 

where the objective function is a linear-fractional functional of the “-1” order.  
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