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Abstract. This paper presents a highly accurate algorithm, based on precise integration method 
(PIM), to investigate the aeroelastic system of an airfoil with control surface. The nonlinear 
system is separated as linear sub-systems, which are solved by PIM stepwise. During each step, 
a predictor-corrector algorithm is proposed to detect switching points between sub-systems. 
Numerical examples show that, the presented algorithm is much more accurate and efficient 
than the widely-used Runge-Kutta method. Sometimes, the Runge-Kutta method even provides 
false results. With such high precision and efficiency, the presented algorithm has the potential 
to become a benchmark for comparison in solving piecewise-smooth dynamical systems. 
Keywords: Airfoil; Control surface; Piecewise; Aeroelastic; Precise integration method. 

1.  Introduction 
In most cases, there is no analytical solution for nonlinear aeroelastic systems, or at least the analytical 
solution is not evident. For this reason, it is rare to find contributions made to seek an analytical 
solution. Alternatively, a large amount of research works were presented to predict the non-decaying 
aeroelastic responses of an airfoil via semi-analytical or numerical solution techniques [1]. Many 
semi-analytical methods based more or less on harmonic balancing were proposed, such as the 
harmonic balance method [2], the fast harmonic balance technique [3], the incremental harmonic 
balance method [4] and the homotopy analysis method [5], to mention a few. 
Mathematically, it is usually not easy to implement semi-analytical solution procedures though they 
exhibit some merits over numerical simulations. To date, semi-analytical approaches have been mainly 
employed in analyzing low-dimensional aeroelastic systems with simple nonlinearities such as cubic 
stiffnesses. It is necessary to develop effective numerical methods to solve aeroelastic systems with 
high dimensions and/or subjected to complicated nonlinearities such as freeplay or hysteresis. In fact, 
many numerical techniques are capable of solving these complex systems, for example, the 
Runge-Kutta (RK) method [6,7], the differential transformation method [8], the point transformation 
method [9], the perturbation-incremental method [10], and a newly initiated multiple scale time 
domain collocation method [11]. Among them, the RK is probably the most widely implemented 
method. To some extent, it has been a benchmark for comparison of numerical as well as 
semi-analytical approaches [12,13]. 
As mentioned above, effective solution procedures of long-term responses such as limit cycle 
oscillations (LCOs) and chaotic responses play a pivotal role in the investigations of aeroelastic 
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systems. It is usually cumbersome, however, to obtain reliable long-term numerical solutions for 
nonlinear systems [14,15]. As non-smooth nonlinearities are included, it can become even tougher. 
More specifically, a computational obstacle will be confronted in determining switching points 
resulted from piecewise nonlinearities [16]. The piecewise stiffness, as one of typical non-smooth 
nonlinearities, usually results from loose hinges of external stores or control surfaces. Lin and Cheng 
[17] reported that, an entirely incorrect asymptotic behavior can occur due to the accumulative error in 
tracking the state response happening exactly at switching points.  
To tackle this problem, a simple yet efficient algorithm has been proposed to solve the airfoil 
aeroelastic system with either a freeplay [18,19] or an external store [20]. This algorithm is based on 
the precise integration method (PIM) initiated by Zhong et al [21] two decades ago. The outstanding 
merits of the PIM lie in its high precision and computation efficiency [22]. It is necessary and 
worthwhile to further extending the presented algorithm, so that it can solve both steady and transient 
responses over the whole solution domain. As there are neither non-autonomous nor external forcing 
terms, the considered system can be transformed into a homogeneous one. It is therefore very simple 
to carry out the PIM procedures. More importantly, both the high precision and efficiency of the PIM 
can be maintained with the help of a predictor-corrector process. 

2.  Equations of Motions 
The typical airfoil section with a control surface as three degrees-of-freedom denoted by a plunge 
displacement h, positive in the downward direction, a pitch angle ߙ and a control surface angle β, 
both positive in the nose up, as shown in Ref. [23]. The semi-chord length of the airfoil section is 
denoted as b. The elastic axis is located at a distance ab from themid-chord with a as a 
non-dimensional coefficient. The mass center (c.g.) of the wing is located at a distance ݔఈܾ from the 
elastic axis. Both the two distances are positive when measured towards the airfoil trailing edge. There 
is a distance cb from the hinge line of the control surface, and a distance ݔఉܾ from the mass center of 
the control surface to the mid-chord. The motions of the airfoil can be described by the following 
equations [23] 

ሷߙఈଶݎ ൅ ఉଶݎൣ ൅ ሺܿ െ ܽሻݔఉ൧ߚሷ ൅ ఈݔ ሷ݄ ൅ 2݉ఈ߱ఈ߫ఈߙሶ ൅ ߙఈଶ߱ఈଶݎ ൌ  ఈ/ሺܾ݉ଶሻܯ

ఉଶݎൣ ൅ ሺܿ െ ܽሻݔఉ൧ߙሷ ൅ ሷߚఉଶݎ ൅ 2݉ఉ߱ఉ߫ఉߚሶ ൅ ሻߚሺܩఉଶ߱ఉଶݎ ൌ  ఉ/ሺܾ݉ଶሻܯ

ሷߙఈݔ ൅ ሷߚఉݔ ൅ ሺ݉௧/݉ሻ ሷ݄ ൅ 2݉௛߱௛߫௛ ሶ݄ ൅ ߱௛
ଶ݄ ൌ  ሺܾ݉ሻ.            (1)/ܮ

where the dot denotes the differentiation with respect to the non-dimensional time defined as t=Ut1/b 
with t1 as the real time (second) and U as the flow speed (m/s), m represents the modal mass per unit 
span for each degree of freedom, mt is the total mass of the modal per unit span, ߱ is the uncoupled 
natural frequency, ߫  is the measured damping ratio, ݎఈ  is the radius of gyration about the 
wing-aileron, ݎఉ is the reduced radius of gyration of aileron, L denotes the aerodynamic lift, and 
 ఉ represent the aerodynamic moment of wing-aileron and aileron, respectively. The modelܯ,ఈܯ
stiffnesses are normalized by ܭఈ ൌ ݉ఈ߱ఈଶ ఉܭ , ൌ ݉ఉ߱ఉ

ଶ  and ܭ௛ ൌ ݉௛߱௛
ଶ . The unsteady 

aerodynamic force and moments in incompressible flow are as follows [23] 

ఈܯ ൌ െܾߩଶሼߨ ቀ
ଵ

ଶି௔
ቁܷܾߙሶ ൅ ଶܾߨ ቀ

ଵ

଼ା௔మ
ቁ ሷߙ ൅ ሺ ସܶ ൅ ଵܶ଴ሻܷଶߚ ൅ ሺ ଵܶ െ ଼ܶ െ ሺܿ െ ܽሻ ସܶ ൅

ሺ1 2⁄ ሻ ଵܶଵሻܷܾߚሶ െ ሾ ଻ܶ ൅ ሺܿ െ ܽሻ ଵܶሿܾଶߚሷ െ ሽሷ݄ܾߨܽ ൅ ߨଶܾܷߩ2 ቀ
௔ାଵ

ଶ
ቁ ߙሺ݇ሻሺܷܥ ൅ ሶ݄ ൅ ܾ ቀ

ଵ

ଶି௔
ቁߙሶ ൅

1 ⁄ߨ ଵܶ଴ܷߚ ൅ ܾሺ1 ⁄ߨ2 ሻ ଵܶଵߚሶሻ.                               (2) 

ఉܯ ൌ െܾߩଶሼ൬െ2 ଽܶ െ ଵܶ ൅ ସܶ ቀ
௔ିଵ

ଶ
ቁ൰ܷܾߙሶ ൅ 2 ଵܶଷܾଶߙሷ ൅ ቀଵ

గ
ቁܷଶߚሺ ହܶ െ ସܶ ଵܶ଴ሻ െ

ሺ1 ⁄ߨ2 ሻܷܾߚሶ ସܶ ଵܶଵ െ ቀଵ
గ
ቁ ଷܾܶଶߚሷ െ ଵܶb ሷ݄ ሽ ൈ ଶܾܷߩ ଵܶଶܥሺ݇ሻሺܷߙ ൅ ሶ݄ ൅ ܾ ቀ

ଵ

ଶି௔
ቁ ሶߙ ൅ 1 ⁄ߨ ଵܶ଴ܷߚ ൅

ܾ ቀ
ଵ

ଶగ
ቁ ଵܶଵߚሶ .                                      (3) 
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ܮ ൌ െܾߩଶ൫ܷߙߨሶ ൅ ߨ ሷ݄ െ ሷߙܾܽߨ െ ܷ ସܶߚሶ െ ଵܾܶߚ൯ െ ሺ݇ሻܥܾܷߩߨ2 ቀܷߙ ൅ ሶ݄ ൅ ܾ ቀ
ଵ

ଶି௔
ቁ ሶߙ ൅

1 ߨ ଵܶ଴ܷߚ⁄ ൅ ܾ ቀ
ଵ

ଶగ
ቁ ଵܶଵߚሶቁ.                            (4) 

The Theodorsen constants ௜ܶ൫݅ ൌ 1,2, …，8൯ are referred to [23]. And, the loading associated with 
the Theodorsen’s function C(k)f(t) is represented by the Duhamel formulation in the time domain. 
More details of the generalized Theodorsen function C(k) can be found in Ref. [24]. 

௖ܮ ൌ ሻݐሺ݇ሻ݂ሺܥ ൌ ݂ሺ0ሻ߶ሺݐሻ ൅ ׬
డ௙ሺఙሻ

డఙ
߶ሺݐ െ ߪሻ݀ߪ

௧
଴ .             (5) 

where 

݂ሺݐሻ ൌ ߙܷ ൅ ሶ݄ ൅ ܾ ቀ ଵ

ଶି௔
ቁ ሶߙ ൅ 1 ⁄ߨ ଵܶ଴ܷߚ ൅ ܾ ଵ

ଶగ ଵܶଵߚሶ .           (6) 

and ߶ሺݐሻ  is the Wagner function. In order to simplify the convolution terms, the Sear’s 
approximation [23] 

߶ሺݐሻ ൎ ܿ଴ െ ܿଵ݁ି௖మ௧ െ ܿଷ݁ି௖ర௧.                      (7) 

can be employed with ܿଵ ൌ 0.165, ܿଶ ൌ 0.0455, ܿଷ ൌ 0.335, and ܿସ ൌ 0.3. 
The final step in simplifying the Theodorsen function is to represent the integral term using the inverse 
Laplace transformation. After two augmented variables are introduced as ݔ௔ଵ ൌ ,ݕ ௔ଶݔ ൌ ሶݕ , the 
coupled state space system given by Eq. (1) can be rewritten as a set of eight first-order ordinary 
differential equations as 

ሶܺ ൌ ܺܣ ൅ 	(8)                                   .ܤ

where ܺ ൌ ሾߙ		ߚ		
௛

௕
ሶߚሶߙ

௛ሶ

௕
 .ሿ், matrix A and vector B are both given in Ref. [23]	௔ଶݔ௔ଵݔ

For a freeplay nonlinearity due to the looseness of the control surface, the control surface moment 
takes the form as 

ሻߚሺܩ ൌ ቐ

ߚ െ ߚ																		,ߜ ൐ ߜ
			0,										 െ ߜ ൑ ߚ ൑ ߜ

ߚ ൅ ߚ												，ߜ ൏ െߜ
.                             (9)	

where ߜ is the beginning of the freeplay. 

3.  The PIM with a Predictor-corrector Procedure 
As the freeplay is included, system (8) becomes non-smooth and can be decomposed into three 
sub-systems in a vector form as 

i iX A X B 
.                                    (10) 

with Ai and Bi as the respective coefficient matrixes for sub-system i (i=1,2 and 3). The expressions for 
these matrixes are given in Ref. [25]. We can transform (10) into homogeneous equations, since the 

coefficient matrixes (Ai) are all reversible. Introducing the transformation 
1

i iY X A B  , we have 

iY AY
                                       (11)	

By this means, the PIM can be employed to solve homogeneous equations (i.e., (11)) rather than 
inhomogeneous ones (i.e., (10)). By this means, the state X can also be obtained according to the 

inverse transformation, i.e., ii BAYX 1 . For each sub-system in (11), its general solution is  

)0()exp( YtAY i
.                                 (12) 



CNAI2019

IOP Conf. Series: Materials Science and Engineering 790 (2020) 012091

IOP Publishing

doi:10.1088/1757-899X/790/1/012091

4

with Y(0) as an IC defined as ii BAXY 1)0()0(  . Given a time series [0, Δ2,ݐΔݐ, …, NΔݐ] with 

Δݐ as one time step and N as the number of integration steps, the state solution at the nth time point 
can be described as 

)0(YTY nn                                (13) 

with T=exp(ܣ௜Δݐ) as the exponential matrix for each time step. More details for the computation of the 
exponential matrix are referred to Zhong [21].  
If the second component of X, i.e., ߚ, never passes either one of the two switching points (-δ or δ), the 
whole time histories can be accurately generated during one of the linear sub-systems. In most cases, 
however, the state switches from one sub-system to another as ߚ passes any one of the switching 
points.  
Denote   as the switching value, and introduce a ratio ߣ ൌ ሺߤ െ ௡ାଵߚ௡ሻ/ሺߚ െ  ௡ሻ. We predict thatߚ

the time needed for ܺ௡ to approach the switching value is about ߣΔݐ. Hence, the predicted state can 
be corrected as ܻ௡ାଵ ൌ ܻ௡expሺܣ௜ߣΔݐሻ ൌ ܶఒܻ௡ . Then we can calculate ܺ௡ାଵ ൌ ܻ௡ାଵ െ ௜ܣ

ିଵܤ௜ . 
Note that, the ratio is equal to 1 if X n+1 is exactly located at the switching point, that means, ߚ௡ାଵ ൌ  .ߤ
The predictor-corrector algorithm is to repeat (14) and (15) until   approaches 1 closely enough.  

4.  Numerical Results and Discussions 
The system parameters are given as follows [23] ܾ ൌ 0.127	m,	ܽ ൌ െ0.5,	ܿ ൌ 0.5, 	݉ ൌ 1.558	kg/
m ,݉௧ ൌ 1.2895	kg ఈݎ, ൌ 0.7321 ఉݎ, ൌ 0.11397 ఈݔ, ൌ 0.434 ఉݔ , ൌ 0.019 , ݇ఈ ൌ 14861	sିଶ ,݇ఉ ൌ
1551	sିଶ,݇௛ ൌ 18091	sିଶ,߫ఈ ൌ 0.01626,߫ఉ ൌ 0.0115, ߫௛ ൌ ߩ ,0.0113 ൌ 1.225	kg/mଶ,ߜ ൌ 0.349 
and the value of U varies. Figure 1 shows the phase planes for LCOs with U=49 obtained by PIM and 
by RK, respectively. Clearly, excellent consistence can be observed between these results. 

pitch α

V
el

oc
ity

  
 

Displacement

plunge h control 

surface β

PIM 

RK 

 
Figure 1. The phase planes of LCOs obtained by PIM and RK with U=49, respectively. 

In order to further examine the accuracy of the presented method, we calculate the norm ||X-Xe||, here 
X is the PIM or RK result and Xe denotes the exact solution. Note that, the exact solution is obtained 
stepwise by repeatedly applying the theories of ordinary differential equations as the state switches 
from one sub-system to another. Note that, a severe computational obstacle will be resulted from 
determining the states at switching points by a tedious binary searching strategy. The logarithmic 
errors of the respective solutions provided by PIM and RK compared with the exact ones are 
illustrated in Fig. 2. The PIM error is at the order of magnitude about 10-10 or so. More importantly, 
the computation accuracy can maintain to be high level regardless of the time step. According to 
Zhong [21], the accuracy can even reach the computer accuracy in principle. Specifically, the accuracy 
of the presented algorithm can be further improved as the tolerance error is refined in the 
predictor-corrector algorithm. As for the RK method, the corresponding errors are about 10-4 and 10-6 
for ∆t as 0.1 and 0.01, respectively. It is reasonable to say the PIM has much higher computation 
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precision than RK. 
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PIM ∆t=0.01 RK ∆t=0.01

RK ∆t=0.1 

 
Figure 2. Logarithmic errors of RK or PIM results versus  
the exact solutions of the aeroelastic system with U=49. 

Note that, the exact solutions are obtained by solving the sub-systems step by step according to the 
theories of ordinary differential equations. The computation is dramatically expensive, since a set of 
10 ordinary differential equations have to be solved repeatedly as the state vector (X) switches 
between the three sub-systems. The CPU running time spent on getting either the RK or exact solution 
is much longer than that used in PIM, as shown in Fig. 3. As discussed above, the PIM error does not 
increase significantly as the step length is chosen much longer. By lengthening the time step in PIM, 
therefore, the computational efficiency can be even improved without losing substantial precision. As 
for RK, usually, the accuracy has to be improved by shortening the time step, which is at the expense 
of dramatically increasing computational resources. It is reasonable to say, therefore, the presented 
algorithm is indeed suitable for long-term simulation. 

C
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Non-dimensional time (t)

PIM ∆t=0.1 

RK ∆t=0.1 

Exact 

 
Figure 3. The CPU running time of RK, PIM and exact solution spent  

on solving the aeroelastic system with U=49. 

5.  Conclusion 
A highly accurate algorithm has been proposed to solve the aeroelastic system of an airfoil section 
with a control surface. The presented algorithm is based on the precise integration method and a 
predictor-corrector scheme. Numerical examples show that the results can be obtained accurately and 
efficiently by the presented algorithm, when compared with the exact solutions and the widely-used 
RK method. Moreover, the precision remains to be at the same order of magnitude regardless of the 
step length. This is an outstanding merit of the presented algorithm over some other time-stepping 
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integration methods. One can get the dynamic responses more efficiently in any desired long-term 
duration by lengthening the time step without losing substantial precision. 
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