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Abstract. Due to the typhoon impacts, aquaculture net cages may be exposed to the risk of 

structural failure as a far-reaching aquaculture equipment. In addition, the fatigue problem of 

key components due to long-term marine alternating loads can not be ignored. The method is 

developed independently on processing samples of cage for testing its performance parameters, 

among which the fatigue Wohler curve is S = -1.022ln (N) + 22.201. By adapting the following 

methods: Mechanical test, Equivalent load finite element simulation and Full field finite element 

simulation respectively is verified each other, and the error is less than 5%. The key nodes of the 

stress concentration of the floating frame are mainly the welding point, the mooring point and 

the edge area of the I-beam frame at both sides. The damage of the cage which caused by tensile 

and bending loads should be considered at the same time. And the tensile strength 22.12 MPa 

and the bending strength 30.58 MPa could be taken as the evaluation standard for the elastic to 

plastic deformation. Structural fracture occurs when the elongation at break exceeds 340.18%. 

The fatigue of the cage is mainly because the stress is much greater than the fatigue limit 3.38 

MPa. The material model test combined with structural mechanics simulation provides the basis 

for guiding the structural optimization design of the cage. 

Keywords. Aquaculture net cage, mechanical properties of material, fatigue life, finite element 

model. 

1. Introduction 

High-density polyethylene (HDPE) gravity type net cage has the remarkable advantages of high 

performance cost ratio, large breeding capacity and so on. In order to reduce the pressure of inshore 

environment, the net cage should expand to the deep sea, however, the cage system may bend and deform 

because it may not bear the excessive load of wave environment, especially in the face of super typhoon. 

And the floating system of net cage is coordinated with the wave, mooring and net loads to do 

reciprocating motion, so the floating frame may be caused fatigue damage due to vibration load. 

Especially at present, there is a lack of specification and unified standard in fatigue reliability of net 

cages. 

The structural dynamics method of finite element model (FEM) has a significant advantage in 

analyzing the risk assessment of net cage system, which can greatly promote the further design and 
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optimization of the cage. Among them, Liu et al. (2017) [1] made nonlinear analysis on the loading 

response of the cage assembly structure by using the material mechanics test and FEM structural model; 

Huang (2019) [2] compared and analyzed the test results of mooring force, heave, pitching and rolling 

of offshore fish farm under different conditions; Nguyena (2019) [3] evaluated the safety factors of 

different specifications of aquaculture fish farm in extreme storm environment. Moreover, Huang et al. 

(2016) [4] employed FEM numerical model to study wave dynamic response of net cage floating frame; 

in addition, Dracha et al. (2016) [5] adopted the FEM method to simulate the key structures such as 

assembly, welding and I-beam frame of a new type of net cage floating frame. The use of FEM Structural 

Mechanics Method can effectively study the failure of key nodes of the floating frame, and the plastic 

yield simulation of the extreme loads of the cage based on the structural analysis has attracted more and 

more attention from domestic and foreign experts. 

The net cage system operation is subjected to the long-term impact of wave dynamic buffering forces, 

and the structural fatigue under the action of alternating stress in high amplitude and high frequency 

during the typhoon period needs to be evaluated and calibrated. The vibration response of net cage 

structure under the periodic action of wave force can be equivalent to the time-domain or frequency-

domain static analysis. In related references, Liu et al. (2019) [6] developed FEM vibration models of 

different cage structures to evaluate the dynamic fatigue response of the floating structure. Hou et al. 

(2019) [7] predicted the damage distribution of the net cage grid mooring system in different annual 

fatigue states; Bai et al. (2018) [8] used FEM dynamic model to carry out stress analysis of net cage 

floating pipe to calculate the fatigue life based on probabilistic analysis of random wave forces; Djebli 

et al. (2016) [9] determined the fatigue strength of HDPE ∅100 pipe under cyclic loadings through 

Material Mechanics Tests and built the cumulative fatigue damage-cycle number (D-N) curve derived 

from decreasing stiffness; Hou et al. (2017) [10] analyzed the fatigue reliability of the net cage mooring 

time; what is more, Huang et al. (2018) [11] proposed a scientific and technological measure which can 

effectively enhance the safety of the net cage structure. In conclusion, studies have shown that failures 

of structural nodes and material damage accumulation all cause the reliability decrease of the cage, and 

further research should be continued to support the structural safety design for the long-term work. 

To sum up, the research about the material and structural mechanic properties of the cage are much 

important in the domestic and foreign reports, however, the research on the judgment standard of the 

failure performance of the key structure of the cage is still insufficient, and the specific research on the 

nonlinear failure and fatigue characteristics of the cage is still needed. Focusing on the above problems, 

this paper involves the material mechanic tests of tensile, bending and vibration loading modes and the 

finite element structural simulation of the evaluation to the plastic failure and fatigue of net cage. 

2. Correlative Calculation of Mechanical Performance Parameters of Net Cage 

2.1. Calculation of Mechanical Parameters of Net Cage Material 

(1) The equation for calculating the elastic modulus of 0.05% -0.25% string is 

2 1

2 1

tE
 

 

−
=

−
                                 (1) 

Et is the tensile modulus in the equation, the unit is MPa; σ1 is the stress measured when strain ε1= 

0.0005, the unit is MPa; σ2 is the stress measured when strain ε2 = 0.0025, the unit is MPa. 

(2) Elongation at break is calculated by the following equation: 

ε = (L-L0)/L0×100%                               (2) 

In the equation, ε is the elongation at break, %; L is the length between the marked lines at break, the 

unit is mm; L0 is the original length between the marked lines, the unit is mm. 

(3) Non-linear static analysis equilibrium equation of high density polyethylene (HDPE) net cage  

[K(x)]{x}={F(t)}                               (3) 
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{x} is the displacement vector in the equation; {F(t)} is the force vector; [K(x)] is the stiffness 

coefficient matrix, which depends on the displacement {x}, and it is not constant. 

(4) The kinetic equation of net cage floating structure 
.. .

( )F t M u C u Ku= + +                                (4) 

F(t) in the kinetic equation is the load acting on the cage; M, C, K represent mass, damping, and 

stiffness matrices, respectively; u , 
.

u , 
..

u  is the displacement, velocity, and acceleration vectors of the 

floating structure nodes, respectively. 

(5) The fourth strength design theory adopts Von-Mises Yield Criterion, as follows: 

2 2 2

0

1
[( ) ( ) ( ) ]

2
x y y z z x      = − + − + −                      (5) 

In the equation, σx, σy and σz are the principal stress in three coordinate axes, respectively; σ0 is the 

equivalent stress. 

(6) The calculation equation for the bending strength of the net cage material is 

2

3

2
f

PL

bh
 =                                   (6) 

In the equation, σf is the bending strength, and the unit is MPa; P is the maximum load on the sample, 

and the unit is N; L is the span, and the unit is mm; b is the width of the sample, and the unit is mm; h 

is the thickness of the sample, and the unit is mm. 

(7) The calculation equation of bending modulus of net cage material is 
3

3

3
10

4
f

L P
E

bh f

−
= 


                              (7) 

Ef is the bending modulus in the equation, and the unit is GPa; △P is the load at the linear stage on 

the deflection curve, and the unit is N; △f is the deflection corresponding to the load, which refers to 

the distance that the center of the sample's span deviates from the original position during the bending 

process, and the unit is mm; the relation of the deflection with strain ε and curvature κ is linear, and a is 

the coefficient, as follows 

△f = εL3/6h = aκ                               (8) 

(8) The calculation equation for the curvature of the net cage pipe is 

R = △f/L×100%                               (9) 

2.2. Finite Element Plastic Yield Model of Net Cage Structure 

The grid units are allocated according to the structure size and analysis type of the cage model. The 

tetrahedral grid division method and tetrahedral grid division method are mainly used. The number of 

nodes in C60 and type 6-3 cage [4] is more than 2×105, and the number of cells is over 105. Each node 

has 6 degrees of freedom, that is, translation and rotation in the x, y, and z directions; the finite element 

contact types of are bonded, no separation and frictionless. 

(9) Newton-raphson equation balance iteration method is used to solve the nonlinear problem of 

FEM structure of net cage. The load is divided into several increments, and each increment determines 

a balance condition. At the end of each load increment, the balance iteration drives the solution back to 

the balance state. 

[KT]{△u}={Fa}-{Fr}                            (10) 

In the equation, [KT] is tangent stiffness matrix; {△u} is the displacement increment; {Fa} is the 

applied load vector; {Fr} is the internal force vector. 
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2.3. Fatigue Mechanics Calculation of Finite Element Model of Net Cage  

(10) The key loading parameters of the residual fatigue strength test including the stress level and stress 

ratio of cyclic loading N times. The test waveform is sine wave, which belongs to the tensile fluctuating 

stress. And the loading frequency is f=10 Hz. The equal proportion loading method is adopted, and the 

fatigue force is “0-F”. The characteristic of sinusoidal fatigue load is 

max min

2
m

 


+
=  

max min

2
alt

 


−
=                               (11) 

In the equation, σm is the stress level; σalt is the stress amplitude; σmax is the maximum stress; σmin is 

the minimum stress; the stress ratio R=Fmin/Fmax=σmin/σmax=0. 

(11) The finite life design of HDPE net cage is based on Palmgren-Miner Linear Fatigue Cumulative 

Damage Theory 

1

1
i

n
i

i
ii

n
D

N=

=                                (12) 

In the equation, ni is the number of stress cycles acting on the i-th level stress level σi; Ni is the fatigue 

life when the stress level reaches failure, and the net cage will be damaged when the cumulative damage 

Di=1. 

3. Mechanical Test and Structural Mechanical Parameters of Net Cage Material 

3.1. Preparation of Tensile, Bending and Welded Specimens for Cage Pipe of Net Cage 

With reference to GB/T 15558.1-2015 and ISO 2818-1994, the national standard sample of floating pipe 

is processed by ourselves, and the sample preparation process is (1) a CNC saw is used to longitudinally 

cut ∅110 mm HDPE pipe into the length of 300mm short tube blank, and cut into rectangular bars with 

a width of 30 mm; (2) the two sides of the dumbbell-shaped samples are high-speed copy milled by the 

machining center, and then the front and back sides of the samples are planar milled to a specified 

thickness, equipped with a liquid coolant to avoid heat accumulation in the sample at the same time; (3) 

the utility knife is used to repair the corner burrs and the sample is rub by sandpaper until the surface 

smoothness level meets the requirements, then inspects the sample’s grinding surface, edges and cutting 

areas, and finally the cutting surface is flat and free of cracks, scratches, and machining damage. Tensile 

and bending specimens are shown in figures 1a and 1b. 

  
(a) Size of dumbbell-shaped tensile specimen (b) Size of rectangle-shaped bending specimen 

Figure 1. Sample structural diagram of cage. 

HDPE pipe is considered as isotropic material. The hot-melt welding of pipe is referred to GB/T 

20674.1-2006, and the time and pressure used at each stage depends on the pipe specifications. The 

standard size ratio SDR=dn/en=11 (dn is the nominal outer diameter of the pipe and en is the nominal wall 

thickness). The welding parameters of ∅100 pipes are shown in table 1. According to GB/T 19810-2005, 

the optimized design of the welding specimen is shown in figure 2. 

4 60±0.5

150

115±0.5

1
0
±
0

.2

2
0
±
0

.2

R
6
040±0.5

4



2020 4th International Conference on Material Science and Technology

IOP Conf. Series: Materials Science and Engineering 774 (2020) 012028

IOP Publishing

doi:10.1088/1757-899X/774/1/012028

5

Table 1. Process parameters of hot-melt welding of ∅110 cage. 

Pipe 

diameter 

(mm) 

Wall 

thickness 

(mm) 

Preheat, heat absorption 

and welding pressure 

(MPa) 

Preheat and heat 

absorption temperature 

(°C) 

Heat 

absorption 

time (s) 

Switch 

time (s) 

Welding 

time (s) 

110 10 0.2 220 160 6 720 

  
(a) Optimized welding sample (b) Dumbbell-shaped welding specimen 

Figure 2. Tensile test sample of welding and optimized form of cage. 

3.2. Tension and Bending Test Process of Net Cage Samples 

The key indicators of the net cage samples are tested by referring to the GB/T 8804.2-88 and GB/T 

1040.1-2006. The preload control rate is 2 mm/min, and then the tensile rate is switched to 50 mm/min 

when the measurement stress reaches 0.2 MPa. The dumbbell-shaped tensile specimen is shown in figure 

3a. The criterion of testing end is 40% decrease of the loading rate, and the sample test is repeated 10 

times or more for each group to obtain the test result. 

Bending test was referred to ASTM D790-03, GB/T 9341-2008 and QB/T 2803-2006. Under the 

specified sample thickness, the bending angle and extrusion distance of the sample are measured to 

evaluate the bending performance of the net cage sample (equations (6)-(9)). What is more, the radius 

of the indenter R1 and the support R2 are both 5 mm. The bending load rate is 4 mm/min, and the span 

of the positioning rectangle-shaped bending specimen is L = 15, h = 60 mm. The maximum stress during 

the process of bending deformation to fracture of the sample is as the bending strength of the net cage. 

The bending test process of the rectangular-shaped sample is shown in figure 3b. 

  
(a) Tensile test   (b) Bending test 

Figure 3. Experimental process of tensile and bending test of cage. 

3.3. Operating Condition Model of HDPE Net Cage Structure 

The net cage is one kind assemble and welding structure of HDPE pipe coils (figure 4). The structural 

parameters are seen in table 2. 

Table 2. FEM structural properties of HDPE net cage. 

 Length (m) Width (m) Height (m) Volume (m3) Mass (kg) 

Type C60 20.8 20.8 1.4 3.18 3022.5 

Type 6-3 22.3 19.4 1.4 2.16 2050.7 

R60

Holding area

Curved

Welding area

Base material
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(a) Stress-strain curve (b) Load-displacement curve 

Figure 4. Mechanical testing results of HDPE specimen under tensile and bending loads. 

Table 3. Mechanical properties of tensile and bending tests of HDPE floating specimen. 

Specimen 
Sectional area 

(mm2) 

Yield 

stress 

(MPa) 

Modulus 

(MPa) 
Yield load (N) 

Deformation 

(mm) 
Fracture location  

Tensile 56.41 22.12 692.69 1246.50 176.07 Middle and upside  

Tensile 

(welding) 
151.00 11.33 821.24 1710.12 61.19 Welding joint  

Bending 133.35 30.58 513.71 363.47 56.08 Middle  

From table 3, equations (2) and (9), the elongation at break of HDPE net cage is (176.07-

40)/40×100%=340.18%, and the bending degree is 93.47%. 

3.4. Fatigue Test and Stress-Period Wohler Fitting Curve of Net Cage  

The net cage material adopted the Instron 8801 fatigue tester to conduct the low-cycle and high-cycle 

fatigue reliability tests. Under the circumstance of 50% failure probability, each stress level (equation 

(12)) is tested on more than 10 samples to carry out the research on flexural fatigue resistance, and the 

selected fatigue stress level is 6 non-equidistant magnitudes from 1 to 106 times. The function 

distribution is shown in figure 5. 

 
(a) S-Log(N)                 (b) S-N 

Figure 5. The fitting curve of stress amplitude vs cycle numbers (Wohler curve) of cage (Wohler curve: 

S-Stress amplitude, N-Cycle numbers to failure). 

3.5. FEM Analysis Results of Dumbbell-Shaped Tensile Specimen and Rectangle-Shaped Bending 

Specimen 

The 1:1 3-D tensile and bending model corresponding to the test situation is established, as shown in 

figures 6, 7 and table 4. 
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(a) Life of full scene simulation in 0-1 kN   (b) Life of specimen in 0-1 kN 

Figure 6. FEM fatigue results of floating specimen obtained by tensile load 0-1 kN. 

 

(a) Bending life                (b) Safety factor 

Figure 7. FEM fatigue results of cage floating specimen obtained by bending load 0-20 N. 

According to the test and finite element simulation, the minimum life of 0-1 kN dumbbell-shaped 

tensile test is 1.436×105, the finite element elastic tensile life of pure dumbbell-shaped is 1.505×105, and 

that of full scene is 1.884×105. The finite element full scene elastic bending life of 0-20N load is 106, 

and the maximum damage zone is the contact support area of both ends and the center of the rectangular-

shaped specimen. 

3.6. Finite Element Structural Models of C60 and Type 6-3 Net Cage 

By applying alternating load and mooring constraint, fatigue risk of cage under long-term wave load in 

elastic stage is evaluated. And the results of the finite element analysis are shown in figures 8, 9 and 

table 5. 

 

(a) SPM and uniform load 40kN             (b) Maximum stress points 

Figure 8. FEM results of Single Point Mooring (SPM) and uniform load 40 kN of C60 cage. 
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(a) Minimum life points                (b) Safety factor diagram 

Figure 9. FEM results of SPM and uniform load 40kN of type 6-3 cage. 

According to figures 7 and 9, the minimum fatigue life of one single point restraint and uniform load 

40kN of type 6-3 net cage is 734 < 103 cycles, which is the same as the zone with the minimum safety 

factor and the maximum stress, it’s the intersection zone of the inner hexagon and the outer triangle that 

far away from the mooring load. 

4. Discussion 

4.1. Mechanical Properties Analysis of Tension, Bending and Fatigue Tests of Net Cage 

The yield fracture rule of HDPE cage sample is shown in figure 4 and table 3, and the mechanical 

properties of materials are consistent with the research scope of other scholars [9]. When the tensile rate 

is at 10mm/min, the welding material of the sample is completely plastically stretched; when the tensile 

rate is at 50mm/min, the elongation at break of the weld is significantly reduced. The elongation at break 

and yield strength of the welded floating specimens are smaller than the base material, but the elastic 

modulus is larger, indicating that the strength, stiffness and toughness of the welded structure are reduced, 

which is a risk area for cage. 

From figure 5, S - LogN is S = -4.313ln(N)+18.18; S - N is S = -1.022ln(N)+22.201. Comparing with 

the research result S = -1.85ln(N)+35.6 of Khelif et al. (2008) [12], the fatigue life of this study is 

relatively smaller when the fatigue stress levels are same. When the fatigue life n ≥ 106, the maximum 

working stress σmax should not exceed the allowable stress [σ6], that is, σmax ≤ [σ6] = 8.08 MPa; the stress 

level corresponding to the extension of the Wohler curve to the horizontal straight line is the fatigue 

limit, that is, the times of cycle is 108, [σ8]=3.38 MPa. It is considered that the HDPE net cage will be 

subjected to fatigue damage when the stress level is higher than 3.38 MPa. 

4.2. Finite Element Simulation Analysis of Tension, Bending and Fatigue of Net Cage Samples 

According to table 4, the stress results of dumbbell-shaped and full-scene tensile models under 100N 

load are compared and verified, and the error is (2.695-2.69)/2.695×100%=0.19% <1%. When the load 

is 800 N, the difference of elastic and plastic model stresses in the full scene of the cage sample is (21.55-

20.46)/21.55×100% = 5.06% > 0. Under the condition of same load, the stress value of the elastic model 

is bigger than that of the plastic model, that is to say, using the finite element elastic equation to calculate 

the cage model can ensure the safety requirements [6]. The finite element tensile simulation result shows 

that the stress is maximized in the area near the center of the sample and necking occurs. There is no 

shoulder fracture and plastic deformation extending to the entire shoulder of the dumbbell-shaped 

sample, which is consistent with the test situation; the equivalent load finite element model, full scene 

finite element model and mechanical test are used to verify the accuracy and validity of each other, 

which have met the engineering accuracy requirements. Through the amplitudes of 0-1 kN and a 

frequency of 10 Hz tensile vibration fatigue tests, the fatigue life of the HDPE dumbbell-shaped 

specimen is obtained, which is 1.436×105. And the finite element simulation lives are 1.505×105and 

1.884×105, respectively, which are both at the 105 life stage. As shown in figure 6, the damage of 0-1000 
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N is extended to the middle area of the inside arc transition of the dumbbell-shaped sample, indicating 

that the sample has been damaged; the minimum finite element fatigue life of the load 0-100 N is 

5.319×107, and the damage area is small and meets the requirements of operation durability. 

Table 4. FEM simulation results under tensile and bending loads of cage floating specimen. 

FEM specimen model Load (N) Displacement (mm) Stress (MPa) Strain (mm/mm) 

Tensile/elastic in dumbbell-shape 100 0.24 2.690 0.002445 

Tensile/elastic in full scene 100 0.25 2.695 0.002449 

Tensile/elastic in full scene 800 7.94 21.550 0.019593 

Tensile/plastic in full scene 800 7.54 20.460 0.018599 

Tensile/plastic in full scene 1000 17.70 22.120 0.020109 

Bending/elastic in rectangle-shape 20 6.29 12.376 0.011250 

Bending/elastic in full scene 20 6.43 13.465 0.013000 

According to table 4, the stresses of full scene elastic bending model and pure long strip bending 

model are 12.376 MPa and 13.465 MPa, respectively, with the error of (13.465-12.376)/13.465×100% 

= 8.09% < 10%. The destruction phenomenon of finite element equivalent load model, finite element 

full scene model and the loading failure mode obtained from the material mechanics test are the same, 

which showed that it is reliable to use the floating structure model to analyze the tensile and bending 

responses of the equivalent wave and mooring loadings. The fatigue life and damage distribution of the 

cage specimens are calculated, and the low cycle and high cycle fatigue failure conditions of the net 

cage structure in long-term operation are predicted. When the bending stress of 0-134.65 MPa is bigger 

than the tensile stress of 0-131.29 MPa, the bending life of 106 (figure 7a) is longer than the tensile life 

of 1.884×105, which indicated that the vibration fatigue damage of the net cage under tensile load is 

greater, and the main reason is that the tensile strength is less than the bending strength (equation (6)). 

The flexural modulus of 513.71 MPa (equation (7)) is less than the elastic modulus of 692.69 MPa, and 

the bending degree of 93.47% is smaller than the elongation at break of 340.18%, that is, under the 

condition of bending load, the static load damage is greater. Therefore, the the failures of tensile and 

bending operations of the net cage should be considered at the same time. 

4.3. Nonlinear Behavior Failure Analysis of HDPE Net Cage Finite Element Structure Model 

The finite element structure model of the net cage is based on the load and restraint method of the 

mooring and net clothing applied to the cage under the wave conditions, and the stress response spectrum 

is obtained by applying to the corresponding nodes of the structure (figures 8 and 9), which clarifies the 

mechanical response characteristics and inherent laws of the net cage structure. Based on equations (9) 

to (10), the nonlinear mechanical performance data of the circular and type 6-3 of net cage structures 

are compared and analyzed, and by combining with the material mechanics tests, the structure of the net 

cage is optimized to make the stress distribution more reasonable. From figure 9, the minimum safety 

factor of the type 6-3 floating frame is distributed in the area connecting the inner hexagon and the outer 

triangle far from the mooring point, and this area has a sharp change in shape and uneven stress 

distribution. The nonlinear behavior of the float finite element model is mainly due to the plastic 

deformation of the key nodes geometry (equation (3)), and the deformation of the cage should be less 

than 953.58 mm (table 5). 

In the elastic failure stage, taking the tensile strength of 22.12 MPa and the bending strength of 30.58 

MPa as the critical standards. In the plastic failure stage, after the inner wall of the HDPE pipe reaches 

yielding, it will not cause damage immediately, and when the plastic zone continuously expands to the 

outer surface and the elongation at break exceeds 340.18%, the structural fracture occurs after the overall 

yielding. From figures 8 and 9, tables 3 and 5, the maximum stress mainly appears at the welding point, 

mooring point and the edge area of the I-beam on both sides. When the uniform load is 40 kN, the 
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equivalent stresses of the single-point mooring and the 8-point mooring of the C60 net cage model are 

38.57 MPa and 3.62 MPa, respectively. The 8-point mooring stress is about 1/10 of the single-point 

mooring stress. According to equation (5) and the allowable stress method analysis, increasing the 

mooring points can significantly reduce the ductile fracture behavior of net cages. 

Table 5. FEM structural analysis of net cage. 

FEM of float Mooring points Uniform load (kN) Displacement (mm) Stress (MPa) Strain (mm/mm) 

Type 6-3 1 40 953.58 24.078 0.022060 

C60 1 40 666.00 38.570 0.035135 

C60 8 40 10.23 3.620 0.003133 

C60 8 800 72.34 24.610 0.022652 

4.4. Fatigue Failure Analysis of HDPE Net Cage Structure Model Based on Wohler Curve 

Due to the wave effect, the cage floating frame, the anchorage and the net clothing are in constant contact 

with each other or undergo sudden changes in stiffness, which causes the conditions to change 

continuously (equation (5)). The maximum stress of the single-point mooring load 40 kN of the C60 net 

cage is 38.57 MPa, which is bigger than that of the type 6-3 net cage’s 24.08 MPa. Under this load 

condition, the theoretical stress concentration factor KT=σmax/σc (σc is the standard stress value) of the 

type 6-3 net cage structure is smaller than the circular type, that is, when in the form of single-point 

mooring, the circular cage can refer to the optimal design of the type 6-3 structure. According to equation 

(4), figures 8 and 9, the circular cage mainly bears bending load and presents elliptical reciprocating 

vibrations [13]. The curved circular cage is suffered alternating compression force at the outside and 

transient tension at the inside; when type 6-3 net cage is in the single-point mooring and with a uniform 

load, it’s deformed in both tensile and bending types. 

From figure 9, when the type 6-3 net cage is in the single-point mooring and with the uniform load 

of 40 kN, the minimum fatigue life is N = 734< 103 cycles, which is mainly including the fatigue crack 

formation life Nc, according to the test, approximately 90% of the fatigue life; and the expansion life of 

main crack to failure is Ng. The local gaps of the circular and type 6-3 net cage structures are in long-

term elastic deformation (figure 4), and the failure mode is that fatigue damage is triggered mainly 

through repeated application of stress. Under the condition of long-term wave loads, the mooring, 

welding, and I-beam edge areas of the net cage are the key parts of fatigue damage. By reducing the 

SDR coefficient of the key areas of the float and increasing the local areas of stress concentration (figures 

8 and 9), the safety, reliability and service life of the net cage can be improved effectively under wave 

loads. 

5. Conclusion 

Mechanical tests and finite element (FEM) analysis of the net cage float under nonlinear static loads and 

vibration fatigue processes are conducted in the article. The research results showed that 

(1) The fatigue Wohler curve of HDPE net cage is S = -1.022ln(N)+22.201. Fatigue damage occurs 

when the stress concentration is greater than the fatigue limit of 3.38 MPa. 

(2) Mechanical test, FEM sample model, and full scene FEM model are adopted to verify each other, 

and can meet the requirements of engineering accuracy.  

(3) Comparing with the tensile stress mode, the bending stress has greater damage to the net cage 

float in static loading type, and smaller damage in vibration fatigue type. In the elastic failure stage, the 

tensile strength 22.12 MPa and the bending strength 30.58 MPa are used as the elastic-plastic 

deformation evaluation criteria, and the elongation at break is 340.18%. 

(4) The minimum life mainly occurs in the mooring point, welding point and the edge areas of I-

beam on both sides. By means of increasing mooring points and reducing SDR coefficients in critical 

areas, the limit bearing capacity and fatigue reliability of net cage float under long-term wave vibration 

environments can be improved. 
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