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Abstract. In recent years, more and more attention has been paid to the development of new 

promising high-speed modes of the transport, especially, magnetic and vacuum pipelines. The 

linear induction motors will be used as traction machines in the early stages of the development 

of the magnetic-levitation and vacuum transport. The linear induction motors with compound-

equalized magnetic flux for lines of the force, which, in addition to traction, can create lateral 

stabilization forces of high-speed carriages on a magnetic suspension, will be used in a 

magnetic vehicle in the nearest future. The effective and safe braking issues are of particular 

importance for high-speed magnetic-levitation transport. To reduce the speed and stop high-

speed transport carriages on a magnetic suspension, the linear traction motors can operate as 

eddy current principle of the brakes. The article discusses the braking modes of a linear 

induction motor with a compound-equalized magnetic flux for lines based on the equivalent 

circuit of the machine. The analytical relationships are obtained for the calculation of the 

braking forces. 

1. Introduction 

The development of the world economy requires the improvement of the transport communications. 

The increase of the passenger traffic speed and cargo movement involves usage of the new types of 

the rolling stock, in particular, the use of the high-speed magnetic-levitation transport (MLT). The 

scientists and engineers from different countries are working to create the high-speed MLT systems 

for both passenger and freight traffic. In the Russian Federation, the scientists from transport 

universities and research organizations are working on the problems developing MLT systems. The 

contribution of the scholar staff of the Petersburg State Transport University to the development of 

new transport systems is noticeable [1-7]. Various types of the linear induction motors, which convert 

electricity directly into the forward movement of a transport carriage, are considered as traction 

machines of a magnetic-levitation transport. The linear motors can be DC machines, synchronous or 

induction-based. At the present time of the MLT systems` development, the traction linear induction 

motors (LIM) seem to be the most promising. The linear induction motors because of their design can 

be made with compound, equalizing and compound-equalized magnetic flux for lines of a force. The 

main range of the movement speeds of the mass transport vehicles is in the range from 350 to 500 

km/h and the study of braking conditions is of particular importance and relevance. The traction LIM 
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can be able to work in the brake mode. The article discusses the braking modes of the linear induction 

motors with compound-equalized magnetic flux for lines, the LIM with compound-equalized magnetic 

flux for lines are multifunctional and are able to create, in addition to traction and side stabilization 

efforts, which increase the safety of the MLT movement. The linear induction motors of this type will 

develop the efforts of the lateral stabilization when it stops the high-speed carriages suspended in a 

magnetic field. 

2. The purpose of the research 

We investigated the brake modes of a linear induction motor with compound-equalized magnetic flux 

for lines of the force.  

 3. The diagram of the replacement of the LIM phase with compound-equalized magnetic flux 

The use of the equivalent circuits for characterizing and analyzing modes of the induction machines is 

widespread in electrical engineering [8, 9]. The use of the detailed equivalent circuits allows 

increasing the accuracy of the calculation of linear induction engines [10-12]. To analyze the 

processes in the LIM, to determine the parameters and characteristics of the engine, equivalent circuits 

and a number of other researchers are used [13-16]. In the systems of the magnetic-levitation transport, 

when studying processes in traction linear induction motors, the influence of the magnetic fields of the 

carriage’s suspension on the characteristics of the LIM should be taken into account [17–20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The LIM replacement circuit with compound-equalized magnetic flux for lines of the force  

The equivalent circuit of a linear induction motor with a compound-equalized magnetic flux for 

lines of the force contains a branch with active r1 and inductive x1 inductor resistances, a branch with 

active resistance of the secondary element (SE) r'
2/s (the electrically conductive part of the secondary 

element is a bus-bar, therefore we ignore the inductive resistance) and a magnetizing branch with 

resistances r0 (it takes into account the power loss in steel) and x1G. On the basis of the LIM 

replacement scheme with compound-equalized magnetic flux for lines of the force (Figure 1), we 

consider the braking modes of the operation. 

4. The braking modes of the LIM operation with compound-equalized magnetic flux for lines of 

the force 
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In the braking mode of the opposition LIM with compound-equalized magnetic, flux for lines of the 

force passes without the use of the special equipment. The LIM control circuit must contain a device 

for reversing the phase order. The braking force of the LIM with a compound-equalized magnetic flux 

for lines of the force in the opposition mode depends on the amount of the slip that exceeds one. At 

large slips, the frequency of the electromotive force (EMF) and current in the secondary element, 

induced by a running magnetic flux, increases to such values that it becomes necessary to take into 

account the influence of the surface effect (current displacement) when determining the active 

resistance of the SE. Therefore, when it determines the mechanical braking force, the effect of the 

current displacement in the secondary element should be taken into account by calculating the depth of 

penetration of an electromagnetic wave of a running magnetic field into a flat conducting bus-bar 

based on relation (1): 

0

0

2
,Z

 
=                                                                   (1) 

where Z0  is the depth of the penetration of the electromagnetic wave (current) into the secondary 

element; 

  is the angular frequency of the EMF and current in the electrically conductive element; 

  - the relative magnetic permeability; 

 0 - the absolute magnetic permeability of the vacuum; 

  - a conductivity of the material of the secondary element. 

The need to take into account the effect of the current displacement is determined by the condition 

Z0  2, where 2 is the thickness of the secondary element, m. 

To determine the braking effort, the reduced active resistance value of the secondary element is 

introduced into the calculation, taking into account current displacement: 

2 2 ,rr r k=                                                                    (2) 

where kr = 2/ Z0 is the coefficient of the increase in the active resistance of the secondary element 

of the LIM due to the displacement of the current in the braking mode. 

Since the angular frequency of the EMF and current in the secondary element of a linear induction 

motor with a compound-equalized magnetic flux for lines of the force depends on the slip, the kr value 

is determined for the entire slip range actually possible in the deceleration mode by inhibition. The 

determination of these factors precedes the calculation of the brake characteristics of the LIM. 

The braking with opposite connection can be considered as a logical continuation of the motor 

mode in the area of the slips exceeding one. In this regard, to calculate the braking characteristics of a 

linear electric motor, a replacement circuit with the same parameters is used as for the motor operation 

mode (Figure 1). 

The braking forces of the LIM with a compound-equalized magnetic flux for lines of the force in 

the opposition mode are determined in the following order: 

1) by the slip in a given range of the speeds; 

2) by the expression (1) for the depth of the current penetration into the secondary element of the 

linear motor for each value of the angular frequency within a given speed range; 

3) the calculated parameters of the equivalent circuit LIM are determined by the resistance values: 
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                                         (3) 

with connection of which is equivalent to the impedance of the parallel-connected elements of the 

equivalent circuit x1G and r''
2/s; 

4) by the total equivalent resistance of the equivalent circuit of the phase of a linear induction 

motor with a compound-equalized magnetic flux for lines of the force: 

( ) ( )
2 2

1 1 ;emo emoZ r r x x= + + +                                                       (4) 

5) the phase current inductor LIM: 

1

1 ;
ph

ph

U
I

Z
=                                                                       (5) 

6) the current in secondary element connected with inductor: 

1
2 1

2

2 2
1

;G
ph

G

x
I I

r
x

s

 =
 

+ 
 

                                                            (6) 

7) the electromagnetic power transmitted by the magnetic field from the inductor of the linear 

motor through the air gap to the secondary element: 

( )
2 2

1 2 ;EM

r
P m I

s


=                                                                  (7) 

8) the braking force in opposition mode:  

1

,EMP
F

V
=                                                                        (8) 

where V1 is the synchronous speed of the traveling magnetic field of a linear induction motor with a 

compound-equalized magnetic flux for lines of the force, m / s. 
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Figure 2. The mechanical characteristics of LIM in mode braking with opposite connection: - 

calculation;  - experiment. 

In order to test the methodology for calculating the LIM braking forces in the opposition mode and 

to evaluate the braking properties of the linear machines of this type, the mechanical characteristics of 

an experimental laboratory engine model were calculated. The mechanical characteristic of a linear 

induction motor in the mode of the braking with opposite connection, obtained by calculation, is 

shown in Figure 2. A pilot study of the braking of the LIM with the opposite connection produced a 

number of the test points, shown in Figure 2 in the form of the circles. The convergence of the 

calculated and experimental values of the braking forces can be considered quite satisfactory. The 

maximum discrepancy of the results was 15%. 

The regenerative braking is used at high speeds of the carriages for uniformity of motion (for 

improving dynamic qualities) or for smoothing the transitional regime with significant changes in the 

speed of movement from higher to lower. In the first case, the wiring diagram of the inductor winding 

remains unchanged, while in the second, a change in the pole division value of the inductor is 

required. 

With the regenerative braking, the linear induction machine goes into the generator mode of the 

operation. The LIM operates in an asynchronous generator mode connecting in parallel to the network 

and giving it electrical energy. At the same time, the linear movement speed does not decrease to "0", 

but at the same time, the linear machine prevents external accelerating factors acting on the carriages 

and gives the movement a more uniform character smoothing the transition process. It is noted that 

while it operates in regenerative braking mode, a linear induction machine with a compound-equalized 

magnetic flux for lines of the force consumes the reactive energy from the network. The equivalent 

circuit of a linear induction motor with a compound-equalized magnetic flux for lines of the force 

operating in regenerative braking mode is shown in Figure 3. The main feature of this equivalent 

circuit is the EMF representation of the secondary element in regenerative braking in the form given to 

the inductor as follows: 

2 2 2

1
.B

s
E I r

s

−
  = −                                                                (9) 



SibTrans-2019

IOP Conf. Series: Materials Science and Engineering 760 (2020) 012054

IOP Publishing

doi:10.1088/1757-899X/760/1/012054

6

 

 
 

Figure 3. The equivalent circuit of a linear induction motor mode for regenerative braking mode 

 

Given there are directions of the currents of the phase of the inductor LIM and to the inductor with 

the current of the secondary element that applies the method of the loop currents, we obtain a system 

of the initial equations for calculating the braking characteristics: 

( ) ( )

( )

1 1 1 1 2 1 1

2 2 2 2 1 1 2 2

;

1
.

G

B G

U I r jx I I jx

s
E I r I I jx I r

s


= − + + −




−     = + − = −


,                                          (10)                                                    

Having performed a series of the transformations of the second equation system (10), we obtain: 

 

2
1

1 2

1

.
G

G

r
jx

sI I
jx


+

=                                                                 (11) 

Substituting the result in the first equation of the system (10), we obtain the following expression: 

( )

2
1

2
1 2 1 1

1

.
G

G

r
jx

rsU I r jx
jx s

 
+ 

= − + + 
 
 

                                                  (12) 

After a series of simple conversions, we present the reduced current of the secondary element of 

the LIM operating in regenerative braking mode in the following form: 

 

 

2 12 1 2 1
1 1 1 1 1 1

2 22

2 12 1 2 1
1 1 1 1

.

G
G G G

G
G G

r xr r r x
U jx x x j r x

s s s
I

r xr r r x
x x j r x

s s s

    
− + + +    

     =
   

− + + +   
   

                                  (13) 

Performing a series of transformations, we obtain the modulus of the current value of the current in 

the secondary element: 

1 1
2

2 2
,GU x

I
R X

 =
+

                                                                (14) 

where ( )2 1 2
1 1 1 1 1 1; .G G G

r r r
R x x X x x r x

s s

 
= − = + +  
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Substituting I'
2 into the expression that determines the current in the phase of the LIM inductor for 

the generator operating mode: 

2 12 2 1 2 1
1 1 1 1 1 1

2 22

2 12 1 2 1
1 1 1 1

.

G
G G G

G
G G

r xr r r r x
U jx x x j r x

s s s s
I

r xr r r x
x x j r x

s s s

       
+ − + + +      

       =
   

− + + +   
   

                           (15) 

Having made several transformations, we obtain the module of the current value of the inductor 

phase current in the form: 
2

2 2
1 1

2
2 2

;

G

r
U x

s
I

R X

 
+ 

 
 =

+
                                                              (16) 

The obtained results made it possible to create a methodology for calculating the LIM braking 

forces with a compound-equalized magnetic flux for lines of the force in the mode of the energy 

recovery to the network. The mechanical characteristic of a linear machine in regenerative braking 

mode is calculated in the following sequence: 

1) the range of slides is set, in which the linear machine will be transferred to regenerative braking 

mode (usually the slip changes from 0 to -1); 

2) equivalent resistance values are determined: 

( )2 1 2 2 2
1 1 1 1 1 1; ; ;G G G

r r r
R x x X x x r x Z R X

s s

 
= − = + + = +                             (17) 

3) reduced current of the secondary element (during regenerative braking, it is actually the primary 

current): 

1 1
2 ;GU x

I
Z

 =                                                                    (18) 

4) reduced the phase EMF of the secondary element of the LIM operating in the generator mode: 

2 2 2

1
.B

s
E I r

s

−
  = −                                                               (19) 

5) total power of the linear machine in the brake mode: 

 

1 1 2 2;B BP m E I =                                                                 (20) 

6) electrical losses in the secondary element: 

( )
2

2 1 2 2;ELP m I r =                                                                (21) 

7) electromagnetic braking power transmitted by the electromagnetic field from the secondary 

element to the inductor: 

 

1 2;EM B ELP P P= −                                                                 (22) 

8) braking force generated by the linear machine: 

1

;EM
B

P
F

V
=                                                                     (23) 

where V1 is the synchronous speed of the motor mode of the LIM; 

9) inductor phase current: 
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2

2 2
1

1 2

1

;

G

G

r
x

s
I I

x

 
+ 

 
=                                                               (24) 

10) power delivered to the power supply: 

2 1 1 1.B EMP P m I r= −                                                                 (25) 

As for countering braking, the calculation is made for the number of the slips. The results are 

combined into a regenerative braking system. It is highlighted that this technique does not take into 

account the magnetic losses in the steel of the inductor core. But as the effective theoretical research 

showed, if these losses are not taken into account, the error does not exceed 3-5% and in engineering 

practice the losses in the inductor steel can be neglected. 

5. Conclusion 

Analytical relations have been obtained for calculating the braking characteristics of a high-speed 

magnet levitation transport based on the equivalent circuit of a linear induction motor with a 

compound-equalized magnetic flux for lines of the force. Methods have been developed for 

calculating the braking modes with opposite connection and recuperative for traction the LIMs with 

compound-equalized magnetic flux for lines of the force. The results of the effective theoretical 

studies are confirmed by experimental data. The comparison showed that the discrepancy between the 

theoretical and experimental data does not exceed 15%. 
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