Paper The following article is Open access

Evaporation processes of alloying components duringwire-arcdeposition of aluminum alloy 5056

, , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation E.S. Salomatova et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 758 012064 DOI 10.1088/1757-899X/758/1/012064

1757-899X/758/1/012064

Abstract

Additive manufacturing technologies are developing fast world wide. Never the less, in the machine-building industry, manufacturing of especially large products is required, and common processes, for example, selective laser melting, are not able to satisfy this requirement. Multilayer wire-arc deposition, allows to make high-quality large-scale products. In addition, the productivity of wire-arc deposition is many times higher than the productivity of powder additive manufacturing. Never the less, the metal obtained by this method is likely to lose easily evaporated alloying elements, which is mainly due to excessive heat and high deposition rates. This process leads to reduced mechanical properties of the deposited metal. The paper presents the results of chemical analysis of the sample obtained by CMT deposition of aluminum alloy 5056.It was revealed that during wire-arc deposition there is evaporation of some alloy components, for example magnesium. A nonlinear theoretical model of nonequilibrium processes in the liquid phase of the deposited metal and the processes of evaporation of chemical easily evaporated elements in the zone of influence of the heating source of wire-arc deposition is presented. Verification of the model was carried out by studying the chemical composition of the samples. During X-ray fluorescence analysis, reduced magnesium content of the first deposited layer was revealed. Increase in the magnesium content was in the upper deposited layers

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/758/1/012064