This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Quantum effects in graphitic materials: Colossal magnetoresistance, Andreev reflections, ferromagnetism, and granular superconductivity

, , and

Published under licence by IOP Publishing Ltd
, , Citation N Gheorghiu et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 756 012022 DOI 10.1088/1757-899X/756/1/012022

1757-899X/756/1/012022

Abstract

Unlike the more common local conductance spectroscopy, nonlocal conductance can differentiate between nontopological zero-energy modes localized around inhomogeneities, and true Majorana edge modes in the topological phase. In particular, negative nonlocal conductance is dominated by the crossed Andreev reflection. Fundamentally, the effect reflects the system's topology. In graphene, the Andreev reflection and the inter-band Klein tunneling couple electronlike and hole-like states through the action of either a superconducting pair potential or an electrostatic potential. We are here probing quantum phenomena in modified graphitic samples. Four-point contact transport measurements at cryogenic to room temperatures were conducted using a Quantum Design Physical Property Measurement System. The observed negative nonlocal differential conductance Gdiff probes the Andreev reflection at the walls of the superconducting grains coupled by Josephson effect through the semiconducting matrix. In addition, Gdiff shows the butterfly shape that is characteristic to resistive random-access memory devices. In a magnetic field, the Andreev reflection counters the effect of the otherwise lowered conduction. At low temperatures, the magnetoresistance shows irreversible yet strong giant oscillations that are known to be quantum in nature. In addition, we have found evidence for seemingly granular superconductivity. Thus, graphitic materials show potential for quantum electronics applications, including rectification and topological states.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/756/1/012022