
IOP Conference Series: Materials
Science and Engineering

     

PAPER • OPEN ACCESS

Cryogenic testing of fast ramping superconducting
magnets for the SIS100 synchrotron
To cite this article: A Bleile et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 755 012133

 

View the article online for updates and enhancements.

You may also like
Beam quality and beam loss predictions
with space charge for SIS100
V. Kornilov, A. Oeftiger, O. Boine-
Frankenheim et al.

-

The FAIR Heavy Ion Synchrotron SIS100
P. Spiller, R. Balss, P. Bartolome et al.

-

Hydraulic adjustment of the two-phase
helium forced flow cooled superconducting
magnets of the SIS100 heavy ion
synchrotron for FAIR
A. Bleile, V. Datskov, E. Fischer et al.

-

This content was downloaded from IP address 3.22.171.136 on 01/05/2024 at 16:43

https://doi.org/10.1088/1757-899X/755/1/012133
https://iopscience.iop.org/article/10.1088/1748-0221/15/07/P07020
https://iopscience.iop.org/article/10.1088/1748-0221/15/07/P07020
https://iopscience.iop.org/article/10.1088/1748-0221/15/12/T12013
https://iopscience.iop.org/article/10.1088/1757-899X/502/1/012112
https://iopscience.iop.org/article/10.1088/1757-899X/502/1/012112
https://iopscience.iop.org/article/10.1088/1757-899X/502/1/012112
https://iopscience.iop.org/article/10.1088/1757-899X/502/1/012112
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsv-g8ASKlVq4EJiLHlFnqFYQc7db8Ki6dbDaabCnvCw3NYYN65Q5RqLi-fBlNHLDXhPbGNogijfoYEm5dVpX4wTklaJhDDdbxckOqqoPBYQHQLzZb_tWaft6CPFgxjvj-ElzZT7JAjAOIwKZ7T14MukADgLd6Mjy43_V5Mty-Ezb8m5ZQrg_OXgiQOMpHyrdvjIgiC_wBCcXJm6tL32EnCCJka_7uKMCSpDSZg2Ul2R1ScfkSZZlPdT332xWF-2VOuQ-SjLMbQPateqwa8I2-ujzR4kkjbflMlqTBma0P5Nyq46cUVjn73c6aZ6JgvL8Pk5EETFQYVfRFZm4_14c7IbnFc0Ug&sig=Cg0ArKJSzNtjFIS72NJ6&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

CEC 2019

IOP Conf. Series: Materials Science and Engineering 755 (2020) 012133

IOP Publishing

doi:10.1088/1757-899X/755/1/012133

1

 
 
 
 
 
 

Cryogenic testing of fast ramping superconducting magnets 

for the SIS100 synchrotron 

A Bleile1, I Datskov1, E Fischer1, H Khodzhibagiyan2, V Marusov1, C Roux1, P Spiller1, 

K Sugita1 and A Szwangruber1  

1 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, 

Germany 
2 Joint Institute for Nuclear Research, Joliot-Curie, 6, 141980 Dubna, Russia 

   

Abstract. The international Facility for Antiproton and Ion Research FAIR is currently under 

construction at GSI, in Darmstadt, Germany. The core component of FAIR, the superconducting 

SIS100 synchrotron will operate with a high repetition rate of up to 1 Hz. The SIS100 ring with 

a circumference of 1083 m contains 108 main dipole magnets with a maximal field of 1.9 T. The 

ion-optical lattice of SIS100 contains also 166 main quadrupoles and 137 corrector magnets. The 

quadrupole and corrector magnets are assembled in the quadrupole units that are pair-wise 

integrated in quadrupole doublet modules. All superconducting magnets will be tested at liquid 

helium temperature to assure their compliancy with the specification. The main dipole modules 

are being tested at the magnet test facility at GSI. Cold testing of the quadrupole doublet modules 

is split in the testing of the quadrupole units at JINR, Russia and in testing of fully assembled 

quadrupole doublet modules at INFN, Italy. The cold testing program includes dynamic AC loss 

measurements and hydraulic adjustment of the parallel cooling channels of SIS100 next to the 

training, magnetic field measurements and other tests. We present the scope of cold testing of 

different types of magnet modules as well as the test results. 

1. Introduction 

The superconducting synchrotron SIS100 is the core component of the FAIR accelerator complex which 

is being built at GSI, Darmstadt, Germany [1]. SIS100 uses fast ramped superconducting magnets 

designed for the pulsed operation with the ramp up time of 0.5 s. Depending on the operating mode of 

the synchrotron the main dipole and quadrupole magnets will be cycled with a repetition frequency of 

up to 1 Hz. Dynamic heat losses caused by fast cycling will reach the values up to 35 W for the dipole 

magnets and 16 W for quadrupoles [2]. There will be 108 dipoles, 166 quadrupoles and 137 corrector 

magnets in the SIS100 ring (Table 1).  High dynamic heat losses require cooling of coils and yokes with 

forced flow two-phase helium [3]. 
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Table 1. Superconducting magnets for SIS100 synchrotron  
      

 main 

dipole 

main  

quad 

chrom. 

sextupole 

steerer 

(hor./vert.) 

nested multipole 

(quad/sext./octup.) 

number of 

magnets 

108 166 42 83 12 

maximal 

current, kA 

13.2 10.5 0.25 0.25 0.25 

ramp time to 

max, s 

0.5 0.5 0.175 0.2 0.175 

 

2. Cryogenic testing of the magnet modules 

2.1. Testing strategy 

Acceptance tests at cryogenic temperatures are foreseen for each magnet module of SIS100. Generally, 

the acceptance tests are divided into Factory Acceptance Tests (FAT) at the manufacturer site and Site 

Acceptance Tests (SAT) which will take place at the dedicated magnet test facilities. The FAT program 

will be executed at room temperature while the SAT will include both, warm and cold tests.   

All dipole prototypes including pre-series dipole are being tested at the Prototype Test Facility (PTF) 

at GSI. For the series dipoles a new Series Test Facility (STF) was built and put in operation at GSI site 

in 2016. The new test facility has four test benches for independent testing of up to four dipole modules. 

Cold testing of quadrupole doublet modules is also possible at STF. However only one pre-series doublet 

module will be tested at STF. For testing of series doublets a dedicated test facility is being constructed 

in INFN, Salerno. In general, testing of the quadrupole doublet modules will be split in two parts. All 

quadrupole magnets with correctors (quadrupole units) will be manufactured and pre-tested in JINR, 

Dubna. After successfully passed tests the quadrupole units will be pair-wise integrated in the 

quadrupole doublet modules and the assembled modules will be finally tested at the test facility at INFN.   

A standard SAT sequence consists of following steps: 

 incoming visual inspection 

 tests at room temperature: 

o check of instrumentation (sensors, voltage taps) 

o dimensional inspection  

o high voltage tests  

o measurement of the cold mass position with respect to the cryostat  

 mounting on the test bench, pumping and cool down 

 tests at helium temperature 

o tests of instrumentation 

o leak tests 

o high voltage tests 

o magnet powering and training 

o magnetic field measurements 

o measurement of heat losses, static and dynamic 

o ramping the 1 Hz cycle and measurement mass flow rates and pressure drop of helium 

in the cooling channels 

 warming up and dismounting from the test bench 

 final tests at room temperature (high voltage tests, instrumentation tests)    
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2.2. Cryogenic dipole module 

SIS100 dipoles are iron-dominated window-frame type magnets with forced flow two-phase helium 

cooling. The magnet consists of the superconducting coil and helium cooled iron yoke. The coil is made 

of the inner cooled cable of the Nuclotron type [3], [4]. The cold mass of the dipole magnet is about 2.1 

t. More details of the magnet design are given in [5]. 

 

 
Figure 1. Cooling scheme of the SIS100 dipole (left) and of the SIS100 sector (right). 

The cooling concept of SIS100 magnets is presented on Figure 1. All dipole magnets and quadrupole 

units in one sector are connected in parallel to the helium supply and return lines. The helium in the 

supply line is sub-cooled and has a temperature of about 4.5 – 4.6 K at P = 1.5 – 1.6 bars. The helium 

passes through the magnet bus bars and the coil (points 1 - 2) and finally through the iron yoke (points 

2 - 3). The subscripts 1, 2 and 3 denote the points on the Figure 1. Due to the pressure drop in the coil 

and due to the static and dynamic heat load, helium at point 2 is in the two phase state with T = 4.3 - 4.4 

K at P2 = P3 = 1.25 bar. The major part of dynamic heat losses is created in the iron yoke thus the helium 

at point 3 can be either two phase or vapour, depending on the operation cycle of the SIS100 synchrotron. 

The heat exchangers attached to the supply header (Points 2 - 2’) transfer heat to the two-phase helium 

flow 2 - 2’ and keep helium in the supply header in its single-phase state over the whole length of the 

SIS100 sector. The hydraulic resistance of the magnet cooling channel is mainly determined by the 

length of the cable with the inner diameter of 4.7 mm and the total length of 108 m (dipole coil including 

bus bas). 

To adjust the hydraulic resistance of the parallel cooling channels, each magnet module is equipped 

with flow impedance installed in the helium inlet (point 1 on Figure 1). For the dipole magnet the flow 

impedance is a 3.5 m long piece of 3.0 x 0.5 mm tube.  The impedance reduces the mass flow rate to the 

desired value. This value is chosen to assure the reliable cooling of the dipole magnet for 1 Hz reference 

cycle (Figure 2). This synchrotron cycle with the maximal field of 1.9 T will be used for acceleration of 

U28+ ions to 2.7 GeV. It is the most demanding cycle with respect to the dynamic heat load. The ramp 

rates are 4 T/s and ˗3.5 T/s for the rising and falling slopes respectively. Measurements on the prototype 

magnets have shown that the coil outlet temperature T2 starts to rise causing a quench when the yoke 

outlet temperature T3  reaches 8 – 9 K. Taking into account a safety margin the value 5.5 ± 0.5 K has 

been  chosen for the yoke outlet temperature T3 as the set point  for 1 Hz operation (Figure 1) with  ΔP 

= P1 – P3 = 0.55 bar. 

 
Figure 2. Reference cycles for hydraulic adjustment of the main dipole magnets (left) and the 

quadrupole units (right) 

0,0 0,2 0,4 0,6 0,8 1,0

0

2

4

6

8

10

12

14

0,0 0,2 0,4 0,6 0,8 1,0

0

2

4

6

8

dipole cycle

 

 

d
ip

o
le

 c
u

rr
e

n
t,

 k
A

time, s

corrector cycle

 

q
u

a
d

ru
p

o
le

 c
u

rr
e

n
t,

 k
A quadrupole cycle

0,0 0,2 0,4 0,6 0,8 1,0

0

100

200

300

400

c
o

rr
e

c
to

r 
c
u

rr
e

n
t,
 A

time, s



CEC 2019

IOP Conf. Series: Materials Science and Engineering 755 (2020) 012133

IOP Publishing

doi:10.1088/1757-899X/755/1/012133

4

 
 
 
 
 
 

 
 

Figure 3. Helium mass flow rates (left plot) and yoke outlet temperatures (right plot) for dipole 

magnets for 1 Hz reference cycle as function of ΔP = Pin - Pout.  The pressure Pout is fixed at 1.14 

bar(a). Data for 18 dipole magnets are presented. 

 

The standard test program includes the measurement of dynamic heat losses by V-I method. By this 

method the voltage on the coil and the magnet current are simultaneously sampled over the whole 

cycle. Then the dynamic heat load caused by cycling is calculated as the integral of electrical power P 

= V·I. The dynamic losses measured by this method are 34.7 ± 0.3 W (stat.). The estimated systematic 

error is about 10 % of the measured value. 

Another part of the standard test program is the measurement of the yoke outlet temperature at 

different inlet pressures. The test results are shown on Figure 3.  All tested dipole magnets fulfill the 

specified conditions, 5.5 ± 0.5 K at the yoke outlet at ΔP = 0.55 bar. As mentioned in Section 2.2, the 

value 5.5 ± 0.5 K was chosen to assure the reliable cooling of the magnet for 1 Hz reference cycle. The 

temperature measured at the coil outlet (Figure1, point 2) was always at 4.3 – 4.4 K.  

Simultaneous measurement of the helium mass flow rate, temperatures and pressures allow 

calculation of the total heat load, static and dynamic.  The total heat load for 1 Hz cycle is 39.5 W with 

statistical error of 0.4 W. The systematic error is about 4 W and is mainly caused by the accuracy of the 

mass flow sensor (Coriolis type).  Without ramping, the helium at the outlet is in two-phase state and 

the yoke outlet temperature can’t be used for calculation of the heat load. To measure the static heat load 

the outlet pressure is increased to 2.3 bar and the measurements are performed with super-critical 

helium. The measured static heat load is 5.1 ± 0.3 W. The difference between the calorimetrically 

measured total heat load and the static heat load is in good agreement with the dynamic heat load values 

measured using the V-I method. 

2.3. Quadrupole Doublet Modules  

Cryogenic tests of SIS100 quadrupole doublet modules [6] are split in two parts, testing of the main 

quadrupoles with corrector magnets (quadrupole units) and testing of assembled quadrupole doublets. 

Manufacturing of main quadrupoles and corrector magnets, assembling them in quadrupole units and 

testing at helium temperatures will be done by the FAIR in-kind partner JINR, Dubna, Russia. Cryogenic 

testing of SIS100 quadrupole units is a main part of the Site Acceptance Tests which will be executed 

at JINR.  Cryogenic testing will be performed at the common JINR / FAIR magnet test facility. The 

standard test sequence for the quadrupole unit is similar to the SAT sequence of dipole module (section 

2.2) except for the measurements of the position of the cold mass with respect to the magnet cryostat. 

Since the quadrupole units do not have their respective cryostats, they are tested in test cryostats which 

belong to the testing infrastructure.  An important step of the test program is the measurement of the 

position of the magnetic axis of the quadrupoles with respect to the fiducial targets installed on the 
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quadrupole yoke. These data are required for pair-wise assembling and alignment of units in the 

quadrupole doublet modules. The cooling conditions will be verified for each quadrupole module in a 

similar way as for dipole modules. Main quadrupoles and corrector magnets will be simultaneously 

ramped at 1 Hz (Figure 2, right) and the length of the flow impedance will be adjusted to keep the yoke 

outlet temperature at 5,5 ± 0.5 K. There are several types of quadrupole units with significantly different 

hydraulic resistance. In the quadrupole unit the coil of the main quadrupole and the coil of the corrector 

coil are hydraulically connected in series. Depending on the type of corrector magnet the hydraulic 

resistances of the units vary in a wide range. Therefore for each new configuration of the unit the length 

of the capillary tube must be defined and verified by measurements. The criteria for the hydraulic 

adjustment have been chosen similar to the dipole magnets: 

 Quadrupole and corrector magnets are ramped in reference cycle (Figure 2) 

 The pressure drop is set to 0.55 bar 

 The yoke outlet temperature must match the range between 5 K and 6 K (5.5 ± 0.5 K) 

Up to now two pre-series units have been tested [2]. The measured dynamic heat load in reference cycle 

is 16 W. Series production of quadrupole units at JINR has started and series testing will start in autumn 

2019. 

 

After a successfully passed SAT the quadrupole units will be shipped to the contractor Bilfinger Noel 

GmbH for integration in doublet modules. A quadruple doublet module integrates in one cryostat two 

quadrupole units, 250 A current leads for corrector magnets, helium cooled beam pipes and other 

devices. Depending on the type, the doublet modules contain beam position monitors, beam collimators 

(cryo catchers), cryo sorption pumps for beam vacuum, cold-warm transition and other parts [6]. The 

test program for quadrupole doublet modules does not include the powering of main quadrupole magnets 

and focuses on components which were not tested at JINR: 

 mechanical interfaces, mechanical integrity and leak tightness at helium temperatures 

 electrical integrity of the module, high voltage tests 

 tests of instrumentation 

 static heat load 

 tests of 250 A current leads for corrector magnets (in DC mode only) 

 tests of the beam vacuum system 

 test of the beam position monitors 

 tests of the cryo catchers 

After successfully passed SAT the doublet modules will be shipped to GSI for installation in the 

accelerator tunnel. 

2.4. Main current leads 

The SIS100 superconducting dipole and quadrupole magnets will be powered through 14 pairs of HTS 

current leads rated at 14 kA DC. The HTS part of current leads is cooled by helium gas at 50 K. There 

are in total 38 current leads (19 pairs) including current leads for the STF test facility and spares. All 

current leads will be tested at STF at GSI. The test program includes leak tests, high voltage insulation 

tests at 3 kV, ramping 1 Hz dipole reference cycle, 14 kA DC current operation and training ramps up 

to 17 kA. The helium consumption measured for 1 Hz reference cycle is 0.7 - 0.8 g/s [7].  The current 

leads can also be operated if the temperature of the HTS stack is increased to 60 K. Currently all current 

leads have been delivered to GSI for SAT and 17 pairs were successfully tested. Cryogenic testing of 

remaining two pairs is in preparation.  

3. Conclusions 

Site Acceptance Tests of SIS100 magnets are executed at three magnet test facilities, at GSI, JINR and 

INFN. Presently about 50% of dipole magnets are successfully tested. All tested dipoles fulfil the 

specified values for the magnetic field quality and show a good reproducibility with respect to the 
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hydraulic behaviour and heat load. Two pre-series quadrupole units have been tested at JINR and 

accepted. Testing of pre-series doublet at GSI and testing of series quadrupole units at JINR is in 

preparation as well as testing of series doublets at INFN. 
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