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Abstract. The problem of determining inorganic crystal structures with a large number of 

atoms from powder diffraction data is a relevant research task. In order to solve this problem, 

we made an algorithm of multi-objective optimization based on the SPEA2 approach 

implemented in a multi-threaded (parallel) version. This algorithm is a development of 

previously presented variants of single-criterion multi-population GA (MPGA). The article 

describes the algorithm and the results of applying to test crystal structures. 

1.  Introduction 

In the development of materials with desired properties, knowledge of the structure and properties of 

substances at the atomic level is required. Many modern materials are created in the form of 

polycrystals and nanocrystals, and powder diffraction data are used to determine their atomic crystal 

structure. To process such data, there are methods that work in the direct, inverse, or dual space, and 

which optimize positions of atoms in the unit cell of the crystal. 

Direct space methods for solving crystal structures from powder diffraction data are used in cases 

where it is not possible to obtain good quality diffraction patterns since the inverse and dual space 

methods are sensitive to the quality of the input data. Direct space methods began their development 

with the advent of high-speed computers in the 1990s. They include the Monte Carlo method [1, 2], 

genetic algorithms [3, 4] and the method of simulated annealing [5, 6]. Currently, the FOX [7], DASH 

[8], TOPAS [9] computer programs that use the simulated annealing method are widely spread. 

Genetic algorithms are implemented in the well-known programs EAGER [10], GEST [11], MAUD 

[12]. 

Simulated annealing methods are the most common among them and the easiest to use, but they 

have no opportunity to apply parallel optimization with the exchange of the best solutions. The 

essence of GA is an imitation of natural biological selection operations: pairwise crossing, mutations, 

and selection of the best test structural models to obtain new generations of evolution. This allows you 

to organize optimization by creating several parallel evolving populations that periodically exchange 

the best solutions among themselves. Such a property of GA allows achieving a nonlinear increase in 

efficiency on modern multicore computers. 

A common problem of all these methods is the deterioration of convergence with the increase of 

the task complexity, associated with a nonlinear increase in the probability of stagnation at numerous 
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local minima of the R-factor hypersurface. Therefore, in practice, their use is limited by the number of 

degrees of freedom of the crystal structures (as a rule, not more than 30–50 DoFs). 

In all common programs that use direct space for crystal structures determining, optimization is 

performed according to one criterion: by the sum of the profile fitting criterion (Chi2 or Rwp-factor) and 

the penalty for too small interatomic distances – each with its own weight coefficient. In previous 

works [13, 14], it was shown that the evolutionary approach for determining crystal structures is 

promising in terms of the possibilities of its modernization. In the process of developing this 

algorithm, its general concept included procedures that are specific to this problem. This led to an 

improvement in the quantitative and qualitative indicators of the algorithm's work (often 

simultaneously). However, it became obvious that the objective function based on the criteria 

convolution (the criterion of diffraction pattern difference and the criterion of physicality of the crystal 

structure) is one of the main limitations for of this method: when the dimension is increased, the 

criterion based on the convolution does not allow organize evolutionary selection efficiently. At the 

same time, the adjustment of the weighting coefficients of the criteria has a significant impact on the 

results of the algorithm; these coefficients can change significantly when moving from solving one 

problem to another one. Therefore, we propose to use the multi-objective optimization (MOO) 

algorithm to solve the problem. In particular, the evolutionary algorithm SPEA2. The article describes 

a multi-threaded version of this algorithm, which allows us to use the resources of modern computers 

efficiently. 

2.  Transition to the multi-objective evolutionary algorithm 

A lot of multi-objective optimization algorithms are known; some of the most effective are SPEA2 

[15], NSGA2 [16], MOEA/D [17]. The goal of the present work was to compare the single-criterion 

(based on convolution) approach and the multi-objective approach in optimizing the multi-objective 

problem of determining the crystal structure of powder substances by efficiency and prospects for 

further development. In connection with this, the main requirement when choosing the MOO 

algorithm was the highest similarity by genetic operators to the single-objective genetic algorithm we 

used to. Therefore, the SPEA2 algorithm has been chosen from the algorithms above. In the 

framework of this algorithm, similar genetic operators are used, the selection scheme is the closest to 

the single-criteria algorithm proposed earlier in [13]. 

2.1.  The SPEA2 algorithm 

There are two criteria we use for determining the crystal structure of a substance: the degree of 

correspondence between the calculated and experimental diffraction patterns, and the penalty 

parameter characterizing the deviation of interatomic distances in the model from physically 

acceptable ones. Therefore, we consider two-criteria optimization in the direction of decreasing the 

value of the criteria. 

The main concept of MOO algorithms is the “Pareto set”. This term refers to a group of such 

individuals in a population that are better than others by at least one of the criteria. Such individuals 

are called "nondominated." The name “dominated” individual means that there is at least one 

individual that is better than the given one by all criteria. An explanation of these concepts is given in 

figure 1.  
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Figure 1. The Pareto front. The axes indicate the values of the two criteria by 

which minimization occurs. Solutions A and B are nondominated; solutions O 

and Q are dominated. The blue line is drawn over non-dominated individuals. 

It is the Pareto front. 

 

The MOO algorithm called The Strength Pareto Evolutionary Algorithm (SPEA) was proposed for 

MOO problems by Zitzler and Thiele in 1999 [18]. In 2001, the same authors published an article on 

the improvements of the algorithm and called it SPEA2 [15]. Its main advantage compared with other 

MOO algorithms is that it is non-elitist, that is, it seeks to pass on to the next generation not only 1-2 

best individuals but the entire Pareto front. For this purpose, an archive set is used. All individuals 

lying on the Pareto front are recorded into it every generation. Moreover, if the archive size is smaller 

than the number of individuals lying on the front, then solutions having close neighbors are removed 

from the archive (as shown in figure 2). When the next generation is generating, individuals for 

crossing are selected from a mixture of the main population and the archive. 

 

 

Figure 2. Scheme of solutions discarding in case the Pareto front size is larger than the specified size 

of the archive. 
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Here are the main stages of the SPEA2 algorithm in brief: 

1. Initialization of the population and creation of an empty archive set (on each work process). 

2. Calculation of the suitability of individuals in a population. Evaluation of the suitability of 

individuals of the archive. 

3. Selection of non-dominated individuals into a new archive. If there are more such individuals 

than the specified size of the archive set, this set is truncated based on the criteria values and the 

distance between individuals in the criteria space. If such individuals are smaller than the size of the 

archive, this archive is filled by adding dominated individuals based on their suitability. 

4. If the stop criterion is met, the archive is displayed as a result of the algorithm's launch. 

5. Tournament-based selection. 

6. Use of recombination and mutation operators. 

2.2.  Features of multi-thread implementation of the SPEA2 algorithm 

We have made a variant of the parallel multi-population SPEA2, in which there are one control 

process and several work processes. The exchange between them is implemented according to the 

"star" scheme. Work processes are evolving according to the usual SPEA2 algorithm. The “main 

archive” is stored in the control process. Its size is equal to the number of work processes multiplied 

by their archive size. The exchange of individuals between processes occurs as follows. 

1) Each generation, the archival sets of work processes are sent to the control process. The archival 

set of the control process is filled out from a mixture of individuals of its archival set from the 

previous generation and newly-arrived individuals. 

2) Every 100 generations, the control process sends its entire archive set to all work processes. 

Such a scheme makes it possible to simultaneously exchange the best individuals between 

populations and provide independence for the evolution of work processes between exchange acts. 

figure 3 shows a flowchart that illustrates how this algorithm works. 

 

 

Figure 3. The flowchart of the parallel multi-population algorithm SPEA. 
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In previous single-objective versions of MPGA, we also used the control process to accumulate 

better solutions. The difference is that in previous versions only one the best solution by a single 

criterion was sent to the control process. Also, the control process accumulated all the solutions 

received. And the control process sent to the work processes several random solutions the suitability of 

which was lower than the average suitability of the accumulated solutions. In the present version of 

the algorithm, we use an exchange scheme that is more suitable for multi-objective optimization. 

3.  Description of the objective function 

The proposed algorithm is used to restore an atomic crystal structure from a powder diffraction 

pattern. Such patterns are obtained by irradiating the powder sample with X-rays in special devices 

called powder diffractometers. A diffraction pattern represents the dependence of the intensity of x-ray 

reflected from the sample on the scattering angle. It is a one-dimensional convolution of a three-

dimensional distribution of electron density in the crystal. 

There is a mathematical model of the powder diffraction, and some of the parameters of this model 

is coordinates of atoms in the crystal. Since the arrangement of atoms in the crystal is periodically 

repeated, it is sufficient to describe only unique atomic positions to describe the entire crystal. The 

minimum volume of the crystal that contains unique atomic positions is called the unit cell. The 

intensity of diffraction reflexes is determined by the following formula: 
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where Yc is the calculated profile intensity; Fhkl is structural amplitude, which depends on the atomic 

coordinates X; fk is scattering energy of the k-th atom, depending on its electron density; xk, yk, zk are 

relative coordinates of the k-th atom in the unit cell in the range from 0 to 1; h, k, l are indexes of 

given crystallographic plane (integer numbers). 

In the problem under consideration, the coordinates of the atoms are variable parameters of the 

model. The difference between the simulated diffraction pattern and the experimental one is used as 

the objective function. This criterion is called the weighted profile R-factor (Rwp-factor) of the Rietveld 

method and is calculated by the formula: 
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where j is the number of the profile point; Yoj and Ycj are the observed and calculated profile 

intensities; wj is the weight of j-th point. 

A penalty for violation of interatomic distances in the solution is an additional objective function. 

The user sets the minimum allowable distance for each pair of atomic types that are contained in the 

substance (for example, O-O, O-Fe, Fe-S). When calculating the fitness value of a solution, the 

distances between all atoms are compared. Then the penalty value is calculated as the sum of these 

violations. 

4.  Verification of the algorithm on test samples 

As test samples, we used the same three samples on which previous versions of the MPGA were 

tested. These were two samples of medium complexity and one sample of high complexity: 
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 K2PbO2 – 10 atoms (30 degrees of freedom) [19]. This is a sample with a low symmetry group 

P-1, which means that local minima are quite narrow and relatively small. 

 Ca2Al3O6F – 9 atoms (25 degrees of freedom, since one of the atoms was symmetrically fixed 

on the edge c) [20]. This is a sample with a higher symmetry group R-3:H, which means more 

local minima. 

 Er10W2O21 – 28 atoms (54 degrees of freedom) [21]. This is a sample with a symmetry group 

Pbcn. It has an average number of symmetry elements, but the solution of this structure is 

complicated by the number of atoms. 

 

The first and third structures were taken from the ICSD database [22]; diffractograms calculated 

from these structures with the following parameters: angle range 5-80º, step 0.015º, CuKα1 radiation, 

were taken as experimental diffractograms. The second sample was analyzed by an experimental 

diffraction pattern obtained from one of the authors of this compound. 

Each of the samples was launched several dozen times with the same settings by different versions 

of the GA. The basic settings were the same; they are listed in table 1. Genetic operators were the 

same for all the work processes. Tournament selection with a tournament size of 3 was used as a 

selection operator. The recombination was a single point. The mutation coefficients in table 1 indicate 

the probability of changing each of the parameters to a random value (within the limits of variation). 

The initial population in each of the processes was created from solutions filled with random values of 

parameters. The atomic coordinates were represented by real numbers without coding to binary 

strings. A local search (LS) was carried out as follows: every few generations, the best solution in the 

population and several random solutions are selected, and their parameters are refined using the 

Rietveld method. 

Table 1. The common settings of the SPEA2 algorithm. 

Parameter Value 

Number of work processes 3 

Population size 50 

Archive size in every work process 7 (15% of population size) 

Archive size in the control process 21 (number of work processes * 

archive size in the work processes) 

LS launch interval 10 

Number of individuals for LS 5 (the best one + 4 random ones) 

The number of LS cycles 3 

The interval of sending individuals from the control process 100 

The number of individuals to be sent Equal to the archive size of the 

control process 

Tournament size 3 

Mutation coefficients (different for work processes) 0.5, 1.0, 1.5 

 

Table 2 shows the results of the launches. Each sample was run in a series of several starts with the 

same settings. Table 2 also contains a comparison with the results obtained by single-criterion versions 

of MPGA for the same samples. 
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Table 2. Results of the algorithm launches and comparison with the results obtained by single-

criterion versions of MPGA. 

Sample DoF 
Launch 

method 

A fraction of successful launches and 

the mean fitness value of the solutions found 

MPGA with 

star-type 

exchange 

MPGA with 

island model 

exchange 

MPGA with island 

model exchange + 

periodic structure 

shift 

SPEA2 

K2PbO2 30 
300 gen., 

50 launches 

55% 

39.96 

60% 

27.73 

72% 

19.34 

84% 

12.91 

Ca2Al3O6F 25 
1000 gen., 

50 launches 

22% 

18.22 

26% 

15.48 

40% 

13.49 

54% 

11.58 

Er10W2O21 54 
3000 gen., 

10 launches 

0% 

4.96 

0% 

3.81 

10% 

4.69 

50% 

1.31 

5.  Discussion 

In order to obtain the results shown in table 2, many tests were conducted with different values of the 

SPEA2 control parameters. On average, all parameters in table 1 were tested in the range from -50% 

to +100% of the values in the table. And in table 1 are the values that allowed to achieve optimal 

results in terms of efficiency/time spent. However, studies on the effect of different types of selection 

or crossover operators have not been conducted. The given number of populations and the number of 

individuals in each population was chosen in order to compare efficiency with previous versions of the 

algorithm. In general, these two parameters depend on the performance of the computer on which the 

algorithm is launched. 

As can be seen from table 2, the effectiveness of the application of the multi-population SPEA2 

algorithm for the first two test structures did not show a considerable increase. At the same time, for 

the third structure, the efficiency turned out to be significantly more than for single-objective 

optimization algorithms. It is also noteworthy that according to the convergence charts, for the third 

structure, the correct solution was found up to 300th generation in 7 successful launches, and up to 

600th generation in 3 successful launches from 10. The convergence of the solutions of the first two 

structures did not have such a strongly-pronounced dependence of convergence on the stage of 

evolutionary search. 

It can be assumed that for the first two simpler structures, the SPEA2 algorithm does not add new 

ways to get out of local minima in comparison with single-objective algorithms. For the third, more 

complex structure, the number of local minima is many times (nonlinear) larger and these algorithms 

begin to cope poorly with the getting out of them. The SPEA2 algorithm continues to provide this 

capability by maintaining population diversity by the archive set, which ultimately leads to 

convergence to a global minimum. 

6.  Conclusion 

A multi-population algorithm of multi-objective optimization SPEA2 is proposed, which is applied to 

the problem of solving inorganic crystal structures from powder diffraction data. Our experiments 

show that this algorithm is more efficient than the previously used single-objective optimization 

algorithms. In the future, this will allow us to solve the problem of determining more complex crystal 

structures. 
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