PAPER • OPEN ACCESS

Optimization of K Value at the K-NN algorithm in clustering using the expectation maximization algorithm

To cite this article: Zulkarnain Lubis et al 2020 IOP Conf. Ser.: Mater. Sci. Eng. 725 012133

View the article online for updates and enhancements.

You may also like

- Structural characteristics of Mg-doped (1x)(K_{0.5}Na_{0.5})NbO₃-xLiSbO₃ lead-free ceramics as revealed by Raman spectroscopy W L Zhu, J L Zhu, Y Meng et al.
- Annealing effects on epitaxial (K,Na)NbOa thin films grown on Si substrates Kiyotaka Tanaka, Rei Ogawa, Sang Hyo Kweon et al.
- Investigation of structural and morphological properties of high energy ion irradiated KNN films Radhe Shyam, Deepak Negi, Apurba Das et al.

DISCOVER how sustainability intersects with electrochemistry & solid state science research

This content was downloaded from IP address 18.220.66.151 on 27/04/2024 at 02:13

IOP Publishing

Optimization of K Value at the K-NN algorithm in clustering using the expectation maximization algorithm

Zulkarnain Lubis^{1,*}, Poltak Sihombing², Herman Mawengkang²

¹Graduate School of Computer Science

²Department of Information Technology, Faculty of Computer Science and Information Technology, University of North Sumatra, Medan, Indonesia

zulkarnainlb@gmail.com

Abstract. Data is the most important thing in a study. The quality of the results of the research will be directly proportional to the quality of the data that will be used in the research is concerned. One of the problems that exist in the data set is the absence of a value in the data for a particular attribute or better known as the missing data. One method that is often used by researchers is the k-nearst Neighbor (KNN). However, this method has several drawbacks, one of which is the selection of appropriate values of k not to degrade the performance of the classification. In the process of calculating the parameters k KNN there that can affect the accuracy of the classification results. To use more than one parameter k then used by majority voting to determine the classification results. If the parameter k in KNN classification used 1 then the result was very tight because it will use the nearest neighbor to the results of the classification. Conversely, if the value of the parameter k used KNN is great then the classification results will blur. This research will optimize the parameters k in the UN tax cluster using the algorithmexpectation Maximation(EM). The results of the research in the form of clustering information by using the number of clusters k value optimization and the number of clusters without using the optimization of the value k. Then analysis the results after getting data already clustered. Results from the study showed that k obtained from the optimization algorithm can improve the results of the cluster where the 66% error can be reduced to 64%, yet very close to the best result of the measurement accuracy is tested.

1. Introduction

One way to classify the data is by using Clustering. Data grouping or clustering is a method used to classify into groups or clusters based on similarity, so that related data is placed in the same cluster. There are several clustering algorithms known ie partitional (Expectation-maximization, K-Means) and hierarchical (Centroid Linkage, Single Linkage), overlapping (Fuzzy C-Means) and hybrid. The algorithm can overcome the arbitrary grouping are partitional algorithm. Where in partitional algorithm, a document can be a member of a group or cluster to a process but the subsequent processes such documents can be moved to another cluster. One partitional algorithm that can group documents that have not been labeled is Expectation-Maximization, the algorithm used to find the value of Maximum Likelihood estimation of parameters in a probabilistic model. The characteristics of this algorithm is able to classify the data that has not been labeled or unlabeled data and also the results of the classification will always convergence. This algorithm has two phases: phase and phase Expectation Maximization.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

In Expectation step (E-step) use the EM algorithm - Cluster for classifying data based on the model parameters. While on the Maximization step (M-step) will be done peng updates of the model parameters by using Multiple Linear Regression. Phase E-step and M-step is continued until the probability of each cluster achieve convergence. Before performing the necessary process of grouping data pre-processing, namely cleansing, tokenizing, parsing. Labeling of a cluster is done by finding the most actual label appears on a Cluster, and then adopt the label as the label Cluster. With the implementation of the EM algorithm - Cluster in the process of budget clusterisasi it can classify and determine the appropriate number of clusters,

2. Stages of Data Mining

Data mining is actually a part of the process of Knowledge Discovery in Databases (KDD), not as a technology intact and independent. Data mining is an important part of steps in the process of KDD primarily concerned with the extraction and calculation of the data patterns are analyzed, as shown by Figure 1 below:

Figure 1. Stages in the process of knowledge discovery

a. Data cleaning

To eliminate the data noise (irrelevant data / dealing directly with the ultimate goal of data mining process, eg data mining that aims to analyze the results of the sale, then the data in the collection as "employee name", "age", and so on can -ignore) and inconsistent.

- b. Data integration
 - To combine multiple data sources.
- c. Data selection

To retrieve the appropriate data for analysis.

d. Data transformation

To transform data into a form more suitable for mining. Data mining is the most important process in which a particular method is applied to generate the data pattern.

e. Pattern evaluation

To identify whether interenting patterns obtained is sufficient to represent knowledge based on specific calculations.

f. Knowledge presentation To present the knowledge that has been obtained from the user.

2.1 Method of KNN (K-Nearest Neighbor)

The working principle of the K-Nearest Neighbor (KNN) is seeking the shortest distance between the data to be evaluated by K neighbors (neighbor) closest to the training data. This technique is included in the nonparametric classification groups. Here we do not pay attention to the distribution of the data to be grouped. This technique is very simple and easy to implement. Similar to clustering techniques, we classify a new data based on the distance the new data into multiple data / neighbor (neighbor) nearby.

KNN algorithm purpose is to classify the new objects based on attributes and sample training. Clasifier not use any model to be matched and only based on memory. Given query point, will find a number of objects or k (training points) closest to the query point. Classification using the voting majority among the classification of k objects. KNN classification algorithm uses adjacency as the predicted value of the new query instance. Algorithm KNN method is simple, operates on the shortest distance from the query instance to the training sample to determine its KNN.

K best value for this algorithm depends on the data. In general, a high k value will reduce the effect of noise on klsifikasi, but draw the line between each classification is becoming increasingly blurred. Nice k value can be selected by optimization of parameters, for example by using cross-validation. The special case where the classification is based on the training data diprekdisikan closest (in other words, k = 1) is called Nearest Neighbor algorithm. excess KNN (*K-Nearest Neighbor*):

- 1. Resilient to training data that has a lot of noise.
- 2. Effective if training data is huge.

The weakness of KNN (K-Nearest Neighbor):

- 1. KNN need to determine the value of the parameter k (the number of nearest neighbors).
- 2. *Training* based on distance is not clear on what kind of distance that must be used.
- 3. Which attributes should be used to get the best results.
- 4. The computational cost is high because the necessary calculation of the distance of each query instance in the whole training sample.

2.2 KNN algorithm

- 1. Determine the parameter K
- 2. Calculate the distance between the data to be evaluated with all the training
- 3. Sort range formed (ascending)
- 4. Determine the shortest distance to the order of K
- 5. Pair the corresponding class
- 6. Find the number of classes from the nearest neighbor and set the class as a class data to be evaluated

KNN formula:

$$d_i = \sqrt{\sum_{i=1}^{p} (x_{2i} - x_{1i})^2}$$

Information:

 x_1 = Sample Data x_2 = Data Test / Testing i = Variable Data d = Distance formed p = Dimension Data

Below is a flowchart of the method KNN:

Figure 2. Flowchart of KNN Method

3. Methodology

Broadly speaking, the stages in this study is illustrated in Figure 3.

... 1

Figure 3. Block diagram of the stages of research

Figure 3 above is a research methodology that will be done by the author. The research methodology aims to outline all the activities carried out during the course of the study. From the picture above, it is known that there are three stages to be done to resolve the case at this research that includes: data collection, pre-process the data, data transformation, optimization of the value of k and cluster results. The preparation process includes three main things:

3.1 Data Selection

Select the data that will be used in the data mining process. In the process of the election is done also attributes that are tailored to the data mining process. In this study, the data used is in the form of data-ready, meaning that the data obtained has been the form of the target data. At this stage the problem to be faced is noisy data and missing values. Data cleaning process pelu done to clean data from duplicate data, the data is inconsistent, or typographical errors. So the data that has been through this process are ready to be processed in data mining. In this study, the data used is data that has been consistent, so that the data cleansing process is only performed on any data missing value.

313

IOP Conf. Series: Materials Science and Engineering 725 (2020) 012133 doi:10.1088/1757-899X/725/1/012133

1	A	В	с	D	E	F	G	Н	1	J	К
1											
2	SPPT	TARGET	SPPT Y Bayar	Tercapai	SPPT Belum Bayar	Target Tak Capai	Penerimaan	Pencapaian	Kategori		
3	997	111.687.118	450	90.128.985	547	21.558.133	80,70	TERCAPAI	NAIK		
4	673	58.896.882	316	49.427.433	357	9.469.449	83,92	TERCAPAI	TURUN		
5	2.108	106.493.314	935	72.531.398	1.173	33.961.916	68, <mark>1</mark> 1	TERCAPAI	NAIK		
6	1.400	57.434.795	535	25.445.940	865	31.988.855	44,30	TIDAK TERCAPAI	TURUN		
7	498	32.945.502	233	18.709.761	265	14.235.741	56,79	TIDAK TERCAPAI	TURUN		
8	473	52.273.697	175	34.690.376	298	17.583.321	66,36	TERCAPAI	TURUN		
9	942	30.941.684	524	17.561.782	418	13.379.902	56,76	TIDAK TERCAPAI	TURUN		
10	718	25.902.318	390	13.759.250	328	12.143.068	53,12	TIDAK TERCAPAI	NAIK		
11	385	26.294.309	169	10.269.476	216	16.024.833	39,06	TIDAK TERCAPAI	TURUN		
12	336	10.101.119	173	5.79 <mark>9.4</mark> 89	163	4.301.630	57,41	TIDAK TERCAPAI	TURUN		
13	991	70.296.473	414	49.007.088	577	21.289.385	69,71	TERCAPAI	TURUN		
14	941	156.416.754	489	138.097.411	452	18.319.343	88,29	TERCAPAI	TURUN		
15	1.111	147.920.197	588	106.572.381	523	41.347.816	72,05	TERCAPAI	NAIK		
16	2.903	144.972.498	1.420	79.203.686	1.483	65.768.812	54,63	TIDAK TERCAPAI	NAIK		
17	288	44.674.689	169	21.339.751	119	23.334.938	47,77	TIDAK TERCAPAI	TURUN		
18	2.725	329.456.622	1.537	204.438.210	1.188	125.018.412	62,05	TERCAPAI	NAIK		
19	1	3.166.668	1	3.166.668	0	0	100,00	TERCAPAI	TETAP		
20	344	23.859.036	223	16.708.075	121	7.150.961	70,03	TERCAPAI	TURUN		
21	1.196	43.499.255	780	31.458.923	416	12.040.332	72,32	TERCAPAI	TURUN		
22	1.482	51.070.436	387	16.191.750	1.095	34.878.686	31,70	TIDAK TERCAPAI	TURUN		
23	1.658	70.966.662	856	42.877.842	802	28.088.820	60,42	TERCAPAI	TURUN		
24	507	22.847.146	207	10.553.302	300	12.293.844	46,19	TIDAK TERCAPAI	NAIK		
25	1.974	117.421.573	530	57.231.401	1.444	60.190.172	48,74	TIDAK TERCAPAI	NAIK		
26	1.459	93.092.242	538	36.377.251	921	56.714.991	39,08	TIDAK TERCAPAI	TURUN		
27	437	23.395.822	196	12.469.996	241	10.925.826	53,30	TIDAK TERCAPAI	NAIK		
28	873	24.245.854	574	17.610.111	299	6.635.743	72,63	TERCAPAI	NAIK		
29	1.433	42.586.720	820	26.287.982	613	16.298.738	61,73	TERCAPAI	NAIK		
30	725	20.110.320	381	9.477.328	344	10.632.992	47,13	TIDAK TERCAPAI	TURUN		
31	1.367	40.779.994	862	26.035.516	505	14.744.478	63,84	TERCAPAI	NAIK		
32	2.469	63.490.805	1.879	49.900.323	590	13.590.482	78,59	TERCAPAI	TURUN		
33	693	61.402.741	399	47.953.448	294	13.449.293	78,10	TERCAPAI	NAIK		
34	874	33.368.374	443	17.998.100	431	15.370.274	53,94	TIDAK TERCAPAI	NAIK		
35	1.099	111.948.767	328	53.875.448	771	58.073.319	48,13	TIDAK TERCAPAI	NAIK		
36	1.543	91.571.016	795	54.217.988	748	37.353.028	59,21	TIDAK TERCAPAI	NAIK		
37	1.506	34.395.422	857	19.946.262	649	14.449.160	57,99	TIDAK TERCAPAI	NAIK		
38	5.664	219.955.560	2.577	108.554.531	3.087	111.401.029	49,35	TIDAK TERCAPAI	TURUN		
39	1.358	110.809.551	785	72.628.801	.573	38,180,750	65.54	TFRCAPAI	NAIK		
	8 E -	Sheet1	Sheet2 S	heet3 🛛 🤫)						

Table 1. The data in excel format

3.2 Data transformation

This study procedures carried out as in figure 3.1, namely, the data obtained from the database of the UN tax revenue Deli Serdang. Data will be modified. Data in the form of Excel 2016 spreadsheet files (.xls) as input to the Weka open source software. Before the data is transformed into ARFF, the data is converted first into the .csv format. Weka transform data from .csv be ARFF. The result of the transformation is preliminary data that will be used for optimization prosesn with k values. The results of the data transformation xls, csv, ARFF can be seen in the picture below.

Table 2. The data as a .csv

	Α	В	С	D	E	F	G	н	I.	J
1	SPPT,TAR	GET,SPPT Y	Bayar,Ter	capai,SPPT	Belum Ba	yar,Target 1	Fak Capai,	Penerimaa	n,Pencapai	an,Kategori
2	997,"111,6	587,118",45	0,"90,128,	985",547,"2	1,558,133	",80.70,TER	CAPAI,NA	IK		
3	673,"58,89	96,882",316	,"49,427,4	33",357,"9,	469,449",8	33.92,TERCA	PAI,TURU	N		
4	2,108,"106	5,493,314",	935,"72,53	1,398","1,1	73","33,96	51,916",68.1	1,TERCAP	AI,NAIK		
5	1,400,"57,	434,795",5	35,"25,445	,940",865,"	31,988,853	5",44.30,TID	AK TERCA	PAI,TURUN		
6	498,"32,94	45,502",233	,"18,709,7	61",265,"14	,235,741"	,56.79,TIDA	K TERCAPA	AI,TURUN		
7	473,"52,2	73,697",175	,"34,690,3	76",298,"17	,583,321"	,66.36,TERC	APAI,TUR	UN		
8	942,"30,94	41,684",524	,"17,561,7	82",418,"13	,379,902"	,56.76,TIDA	K TERCAPA	AI,TURUN		
9	718,"25,90	02,318",390	,"13,759,2	50",328,"12	,143,068"	,53.12,TIDA	K TERCAP	AI,NAIK		
10	385,"26,29	94,309",169	,"10,269,4	76",216,"16	,024,833"	,39.06,TIDA	K TERCAP	AI,TURUN		
11	336,"10,10	01,119",173	,"5,799,48	9",163,"4,3	01,630",57	7.41,TIDAK T	ERCAPAI,	TURUN		
12	991,"70,29	96,473",414	,"49,007,0	88",577,"21	,289,385"	,69.71,TERC	APAI,TUR	UN		
13	941,"156,4	416,754",48	9,"138,097	,411",452,'	18,319,34	3",88.29,TE	RCAPAI,TU	JRUN		
14	1,111,"14	7,920,197",	588,"106,5	72,381",523	3,"41,347,8	816",72.05,T	ERCAPAI,	NAIK		
15	2,903,"144	1,972,498",	"1,420","79	9,203,686",	'1,483","6	5,768,812",5	54.63,TIDA	K TERCAPA	I,NAIK	
16	288,"44,6	74,689",169	,"21,339,7	51",119,"23	,334,938"	,47.77,TIDA	K TERCAPA	AI,TURUN		
17	2,725,"329	9,456,622",	"1,537","20	04,438,210"	,"1,188","	125,018,412	",62.05,TE	RCAPAI,NA	AIK	
18	1,"3,166,6	68",1,"3,16	6,668",0,0	,100.00,TEF	CAPAI, TE	ТАР				
19	344,"23,85	59,036",223	,"16,708,0	75",121,"7,	150,961",7	70.03,TERCA	PAI,TURU	N		
20	1,196,"43,	499,255",7	80,"31,458	,923",416,"	12,040,333	2",72.32,TER	RCAPAI,TU	RUN		
21	1,482,"51,	070,436",3	87,"16,191	,750","1,09	5","34,878	3,686",31.70	TIDAK TE	RCAPAI,TU	RUN	
22	1,658,"70,	966,662",8	56,"42,877	,842",802,"	28,088,820	0",60.42,TER	CAPAI,TU	RUN		
23	507,"22,84	47,146",207	,"10,553,3	02",300,"12	,293,844"	,46.19,TIDA	K TERCAPA	AI,NAIK		
24	1,974,"11	7,421,573",	530,"57,23	1,401","1,4	44","60,19	0,172",48.7	4,TIDAK TI	ERCAPAI, N	AIK	
25	1,459,"93,	092,242",5	38,"36,377	,251",921,"	56,714,99	1",39.08,TID	AK TERCA	PAI,TURUN		
26	437,"23,39	95,822",196	5,"12,469,9	96",241,"10	,925,826"	,53.30,TIDA	K TERCAP	AI,NAIK		
27	873,"24,24	45,854",574	,"17,610,1	11",299,"6,	635,743",7	72.63,TERCA	PAI,NAIK			
28	1,433,"42,	586,720",8	20,"26,287	,982",613,"	16,298,73	8",61.73,TER	CAPAI,NA	AIK		
29	725,"20,11	10,320",381	,"9,477,32	8",344,"10,	632,992",4	17.13,TIDAK	TERCAPA	I,TURUN		
30	1,367,"40,	779,994",8	62,"26,035	,516",505,"	14,744,47	3",63.84,TER	CAPAI,NA	AIK		
31	2,469,"63,	490,805","	1,879","49,	900,323",5	90,"13,590	,482",78.59	TERCAPA,	I,TURUN		
32	693,"61,40	02,741",399	,"47,953,4	48",294,"13	,449,293"	,78.10,TERC	APAI,NAII	<		
33	874,"33,36	58,374",443	,"17,998,1	00",431,"15	,370,274"	,53.94,TIDA	K TERCAPA	AI,NAIK		
34	1,099,"111	L,948,767",	328,"53,87	5,448",771,	"58,073,3	19",48.13,TII	DAK TERC	APAI,NAIK		
35	1,543,"91,	571,016",7	95,"54,217	,988",748,"	37,353,028	3",59.21,TID	AK TERCA	PAI,NAIK		
36	1,506,"34,	395,422",8	57,"19,946	,262",649,"	14,449,160	0",57.99,TID	AK TERCA	PAI,NAIK		
37	5,664,"219	9,955,560",	"2,577","10	08,554,531"	,"3,087","	111,401,029	",49.35,TI	DAK TERCA	PAI,TURUN	
38	1,358,"110),809,551",	785,"72,62	8,801",573,	"38,180,75	50",65.54,TE	RCAPAI,N	AIK		
39	1.387."96.	585.740".5	78."50.338	.175".809."	46.247.56	5".52.12.TID	AK TERCA	PAI.NAIK		
	4	pajak	(+)							

	pajak.arff										
Re	elation: pajak										
N), 1: SPPT	2: TARGET	3: SPPT Y Bavar	4: Tercapai	5: SPPT Belum Bavar	6: Target Tak Capai 7	: Penerimaan	8: Pencapaian	9: Kategori		
	Nominal	Nominal	Nominal	Nominal	Nominal	Nominal	Numeric	Nominal	Nominal		
1	997.0	111,687	450.0	90,128,	547.0	21,558,133	80.7	TERCAPAI	NAIK		
2	673.0	58,896,	316.0	49,427,	357.0	9,469,449	83.92	TERCAPAI	TURUN		
3	2,108	106,493	935.0	72,531,	1,173	33,961,916	68.11	TERCAPAI	NAIK		
4	1,400	57,434,	535.0	25,445,	865.0	31,988,855	44.3	TIDAK TER	TURUN		
5	498.0	32,945,	233.0	18,709,	265.0	14,235,741	56.79	TIDAK TER	TURUN		
6	473.0	52,273,	175.0	34,690,	298.0	17,583,321	66.36	TERCAPAI	TURUN		
7	942.0	30,941,	524.0	17,561,	418.0	13,379,902	56.76	TIDAK TER	TURUN		
8	718.0	25,902,	390.0	13,759,	328.0	12,143,068	53.12	TIDAK TER	NAIK		
9	385.0	26,294,	169.0	10,269,	216.0	16,024,833	39.06	TIDAK TER	TURUN		
1	336.0	10,101,	173.0	5,799,489	163.0	4,301,630	57.41	TIDAK TER	TURUN		
1	1 991.0	70,296,	414.0	49,007,	577.0	21,289,385	69.71	TERCAPAI	TURUN		
1	2 941.0	156,416	489.0	138,097	452.0	18,319,343	88.29	TERCAPAI	TURUN		
1	3 1,111	147,920	588.0	106,572	523.0	41,347,816	72.05	TERCAPAI	NAIK		
1	4 2,903	144,972	1,420	79,203,	1,483	65,768,812	54.63	TIDAK TER	NAIK		
1	5 288.0	44,674,	169.0	21,339,	119.0	23,334,938	47.77	TIDAK TER	TURUN		
1	6 2,725	329,456	1,537	204,438	1,188	125,018,412	62.05	TERCAPAI	NAIK		
1	7 1.0	3,166,668	1.0	3,166,668	0.0	0.0	100.0	TERCAPAI	TETAP		
1	3 344.0	23,859,	223.0	16,708,	121.0	7,150,961	70.03	TERCAPAI	TURUN		
1	9 1,196	43,499,	780.0	31,458,	416.0	12,040,332	72.32	TERCAPAI	TURUN		
2) 1,482	51,070,	387.0	16,191,	1,095	34,878,686	31.7	TIDAK TER	TURUN		
2	1 1,658	70,966,	856.0	42,877,	802.0	28,088,820	60.42	TERCAPAI	TURUN		
2	2 507.0	22,847,	207.0	10,553,	300.0	12,293,844	46.19	TIDAK TER	NAIK		
2	3 1,974	117,421	530.0	57,231,	1,444	60,190,172	48.74	TIDAK TER	NAIK		
24	4 1,459	93,092,	538.0	36,377,	921.0	56,714,991	39.08	TIDAK TER	TURUN		
2	5 437.0	23,395,	196.0	12,469,	241.0	10,925,826	53.3	TIDAK TER	NAIK		
2	6 873.0	24,245,	574.0	17,610,	299.0	6,635,743	72.63	TERCAPAI	NAIK		
2	7 1,433	42,586,	820.0	26,287,	613.0	16,298,738	61.73	TERCAPAI	NAIK		
2	3 725.0	20,110,	381.0	9,477,328	344.0	10,632,992	47.13	TIDAK TER	TURUN		
2	9 1,367	40,779,	862.0	26,035,	505.0	14,744,478	63.84	TERCAPAI	NAIK		
3	2,469	63,490,	1,879	49,900,	590.0	13,590,482	78.59	TERCAPAI	TURUN		
3	1 693.0	61,402,	399.0	47,953,	294.0	13,449,293	78.1	TERCAPAI	NAIK		
3	2 874.0	33,368,	443.0	17,998,	431.0	15,370,274	53.94	TIDAK TER	NAIK		
3	3 1,099	111,948	328.0	53,875,	771.0	58,073,319	48.13	TIDAK TER	NAIK		
3	4 1,543	91,571,	795.0	54,217,	748.0	37,353,028	59.21	TIDAK TER	NAIK		
3	5 1,506	34,395,	857.0	19,946,	649.0	14,449,160	57.99	TIDAK TER	NAIK		
3	5,664	219,955	2,577	108,554	3,087	111,401,029	49.35	TIDAK TER	TURUN		
3	7 1,358	110,809	785.0	72,628,	573.0	38,180,750	65.54	TERCAPAI	NAIK		
3	3 1,387	96,585,	578.0	50,338,	809.0	46,247,565	52.12	TIDAK TER	NAIK		
3	9 622.0	21,117,	449.0	16,045,	173.0	5,071,953	75.98	TERCAPAI	NAIK		

Table 3. The data in ARFF format

3.3 Optimization Rated K

k-Nearest Neightbor (KNN) is a method using supervised algorithms where the results of the new query instance is classified based on the majority of categories on KNN. The purpose of this algorithm is to classify a new object attributes and training Based on the sample. Classifier does not use any model to be matched and only based on memory. Given query point, will find a number of objects or K (training points) closest to the query point.

3.4 Expectation Maximization Clustering

Expectation maximization algorithm is an algorithm unsupservised learning that has the ability to perform searches darisekumpulan knowledge of data that do not have labels or targets a particular class, by seeingthe value of any instances distributed into the Gaussian distribution, more tepatnyaadalah Gaussian mixture, then do iterations ascending to seek the highest likelihood value for each instance (see proximity to each cluster instances). Expectation Maximization algorithm (EM algorithm) is an algorithm that utilizes the mixture of Gaussian mixture.

Basically EM algorithm consists of two steps, ie, expectation and maximization. Calculating expektasi to a likelihood probability value, then the second step of fixing the value of the probability of the stretcher by changing parameters on Gaussian mixture so as to achieve maximum likelihood. There some things that need to be emphasized in the EM algorithm Algorithm namely:

- 1. Maximum Likelihood Estimation (MLE)
- **2.** Mixtures of Gaussians
- **3.** Estimation-Maximization (EM)

But the EM algorithm using Gaussian mixture or words of a Gaussian lainlebih used or seeking mixture of yangdidapatkan distribution. EM Algorithm has the task of finding each Gaussian yangterdapat on Gaussian mixture distribution and develop each Gaussian yangditemukan at the optimum condition (so the model is more fit) that's called maximization, and the clustering process.

3.5. Interpretation / Evaluation

At this stage of the evaluation and interpretation of the patterns obtained based on the results of clustering data using EM-cluster method. If the results obtained are not appropriate, then the process would be repeated to the stage of the clustering process data. Knowledge of this stage is the final part of the KDD process where possible to investigate whether a pattern or information found in conflict with the facts. Pattern information generated from the data mining process should be presented in a form easily understood by the parties concerned.

4. Result and Discussion

Furthermore, from the data of the parameter with a k-nn algorithm, the data in the pull to get the Weka application cluster also using two parts of the cluster with no parameters and cluster k-nn-nn with parameter k. Both parts are in the cluster by using an algorithm *expectation Maximization* (EM). This algorithm is already available in Weka and can be directly used. The output from these two different parts and will be compared. For the results of the cluster with no parameters can be viewed as in Table 4.

hs	-1.arff hs-2.arff										
Relati	on: pajak_clustered	i									
No.	1: Instance_number	2: SPPT	3: TARGET	4: SPPT Y Bayar	5: Tercapai	6: SPPT Belum Bayar	7: Target Tak Capai 8: I	Penerimaan	9: Pencapaian	10: Kategori	11: Cluster
	Numeric	Nominal	Nominal	Nominal	Nominal	Nominal	Nominal	Numeric	Nominal	Nominal	Nominal
1	0.0	997.0	111,687	450.0	90,128,	547.0	21,558,133	80.7	TERCAPAI	NAIK	cluster4
2	1.0	673.0	58,896,	316.0	49,427,	357.0	9,469,449	83.92	TERCAPAI	TURUN	cluster4
3	2.0	2,108	106,493	935.0	72,531,	1,173	33,961,916	68.11	TERCAPAI	NAIK	cluster10
4	3.0	1,400	57,434,	535.0	25,445,	865.0	31,988,855	44.3	TIDAK TER	TURUN	cluster2
5	4.0	498.0	32,945,	233.0	18,709,	265.0	14,235,741	56.79	TIDAK TER	TURUN	cluster3
6	5.0	473.0	52,273,	175.0	34,690,	298.0	17,583,321	66.36	TERCAPAI	TURUN	cluster10
7	6.0	942.0	30,941,	524.0	17,561,	418.0	13,379,902	56.76	TIDAK TER	TURUN	cluster3
8	7.0	718.0	25,902,	390.0	13,759,	328.0	12,143,068	53.12	TIDAK TER	NAIK	cluster0
9	8.0	385.0	26,294,	169.0	10,269,	216.0	16,024,833	39.06	TIDAK TER	TURUN	cluster2
10	9.0	336.0	10,101,	173.0	5,799,489	163.0	4,301,630	57.41	TIDAK TER	TURUN	cluster3
11	10.0	991.0	70,296,	414.0	49,007,	577.0	21,289,385	69.71	TERCAPAI	TURUN	cluster10
12	11.0	941.0	156,416	489.0	138,097	452.0	18,319,343	88.29	TERCAPAI	TURUN	cluster/
13	12.0	1,111	147,920	588.0	106,572	523.0	41,347,810	72.05	TERCAPAI	NAIK	cluster9
14	13.0	2,903	144,972	1,420	79,203,	1,483	05,708,812	54.03	TIDAK TER	NAIK	clustero
10	14.0	288.0	44,074,	109.0	21,339,	1 100	23,334,938	47.77	TERCARAL	NAIZ	cluster6
10	15.0	2,725	329,400	1,037	204,430	1,100	125,016,412	100.0	TERCAPAL		cluster 10
10	10.0	244.0	3,100,000	222.0	16 709	121.0	7 160 061	70.02			cluster 10
10	17.0	1 106	42 400	790.0	21 469	121.0	12 040 222	70.03	TERCAPAI	TURUN	cluster10
20	10.0	1,190	43,499, 51,070	297.0	16 101	1 005	24 979 696	2.32		TURUN	cluster3
21	20.0	1,402	70.966	856.0	10,131,	802.0	28 088 820	60.42	TERCARAL	TURUN	cluster10
22	20.0	507.0	22 847	207.0	10 553	300.0	12 203 844	46.19		NAIK	cluster6
23	22.0	1 974	117 421	530.0	57 231	1 4 4 4	60 190 172	48.74	TIDAK TER	NAIK	cluster6
24	23.0	1 4 5 9	93 092	538.0	36 377	921.0	56 714 991	39.08	TIDAK TER	TURUN	cluster2
25	24.0	437.0	23 395	196.0	12 469	241.0	10 925 826	53.3	TIDAK TER	NAIK	cluster0
26	25.0	873.0	24,245	574.0	17.610	299.0	6.635.743	72.63	TERCAPAI	NAIK	cluster9
27	26.0	1,433	42,586,	820.0	26,287,	613.0	16,298,738	61.73	TERCAPAI	NAIK	cluster10
28	27.0	725.0	20,110,	381.0	9,477,328	344.0	10,632,992	47.13	TIDAK TER	TURUN	cluster6
29	28.0	1,367	40,779,	862.0	26,035,	505.0	14,744,478	63.84	TERCAPAI	NAIK	cluster10
30	29.0	2,469	63,490,	1,879	49,900,	590.0	13,590,482	78.59	TERCAPAI	TURUN	cluster4
31	30.0	693.0	61,402,	399.0	47,953,	294.0	13,449,293	78.1	TERCAPAI	NAIK	cluster9
32	31.0	874.0	33,368,	443.0	17,998,	431.0	15,370,274	53.94	TIDAK TER	NAIK	cluster0
33	32.0	1,099	111,948	328.0	53,875,	771.0	58,073,319	48.13	TIDAK TER	NAIK	cluster6
34	33.0	1,543	91,571,	795.0	54,217,	748.0	37,353,028	59.21	TIDAK TER	NAIK	cluster3
35	34.0	1,506	34,395,	857.0	19,946,	649.0	14,449,160	57.99	TIDAK TER	NAIK	cluster3
36	35.0	5,664	219,955	2,577	108,554	3,087	111,401,029	49.35	TIDAK TER	TURUN	cluster6
37	36.0	1,358	110,809	785.0	72,628,	573.0	38,180,750	65.54	TERCAPAI	NAIK	cluster10
38	37.0	1,387	96,585,	578.0	50,338,	809.0	46,247,565	52.12	TIDAK TER	NAIK	cluster0
39	38.0	622.0	21,117,	449.0	16,045,	173.0	5,071,953	75.98	TERCAPAI	NAIK	cluster9
40	39.0	89.0	4,324,718	53.0	2,542,244	36.0	1,782,474	58.78	TIDAK TER	TURUN	cluster3
41	40.0	710.0	28,904,	357.0	11,189,	353.0	17,714,316	38.71	TIDAK TER	TURUN	cluster2
42	41.0	3,366	83,397,	2,346	57,677,	1,020	25,719,730	69.16	TERCAPAI	NAIK	cluster10
43	42.0	149.0	4,018,434	118.0	2,919,124	31.0	1,099,310	72.64	TERCAPAI	TURUN	cluster9
44	43.0	155.0	4,619,470	142.0	4,383,164	13.0	236,306	94.88	TERCAPAI	TURUN	cluster8
45	44.0	2,077	72,942,	1,300	47,117,	777.0	25,824,935	04.0	TERCAPAI	NAIK	cluster 10
40	45.0	2,312	108,010	1,470	130,830	042.U 102.0	51,114,210	70.60	TERCAPAI	NAIK	cluster9
4/	40.0	830.0	28,197,	644.0	22,471,	192.0	5,725,451	79.69	TERCAPAI	NAIK	cluster4
48	47.0	3,591	112,809	2,408	13,228,	1,123	33,040,598	10.2	TERCAPAI	NAIZ	cluster 10
50	48.0	2 100	10,922,	1 /71	13,929, 50,326	710.0	30 525 407	66.02	TERCAPAL	TURUN	cluster10
51	49.0	2,190	5 /02 154	279.0	5 /02 154	0.0	0.0	100.03	TERCAPAL	TETAP	cluster1
52	0.00 E1 0	1 212	36 361	816.0	24 260	497.0	12 100 889	66 70	TERCAPAL	NAIK	cluster10
53	52.0	1,513	56 221	1 317	40 624	633.0	15 596 724	72.26	TERCAPAL	NAIK	cluster9
54	52.0	1 133	38 172	663.0	24 093	470.0	14 079 098	63.12	TERCAPAL	NAIK	cluster10
55	54.0	428.0	9 051 527	366.0	8 110 587	62.0	940 940	89.6	TERCAPAL	TURUN	cluster5
56	55.0	337.0	12.270	132.0	7.034 686	205.0	5.235.339	57.33	TIDAK TER	NAIK	cluster3
L		040.0	02,000	402.0	40.070	452.0	4 004 400		TEDOADA	NIAUZ	aluated

Table 4. Cluster results with the original data

Table 5. Results of Cluster Without Parameter K-NN

No.	cluster	Total Instant
1	0	15
2	1	31
3	2	10
4	3	14
5	4	12
6	5	6
7	6	19
8	7	11
9	8	14
10	9	25
11	10	48

The second phase of testing is done with the data optimization results using the k value of K Nearest Neighbor with cluster model validation is performed on the original data. When implemented generate data as in Table 6.

1.16	5-1.dill 115-2.d												
Relat	ion: pajak_pred	licted	clustere	d									
No.	1: Instance_nu	mber	2: SPPT	3: TARGET	4: SPPT Y Bayar	5: Tercapai	6: SPPT Belum Bayar	7: Target Tak Capai 8	: Penerimaan	9: Pencapaian	10: predictedKategori	11: Kategori	12: Cluster
	Numeric		Nominal	Nominal	Nominal	Nominal	Nominal	Nominal	Numeric	Nominal	Nominal	Nominal	Nominal
1		0.0	4,731	140,089	1,922	63,003,	2,809	77,085,995	44.97	TIDAK TER	TURUN	TURUN	cluster7
2		1.0	942.0	30,941,	524.0	17,561,	418.0	13,379,902	56.76	TIDAK TER	NAIK	TURUN	cluster7
3		2.0	143.0	4,739,950	124.0	4,026,752	19.0	713,198	84.95	TERCAPAI	NAIK	TURUN	cluster8
4		3.0	725.0	20,110,	381.0	9,477,328	344.0	10,632,992	47.13	TIDAK TER	TURUN	TURUN	cluster7
5		4.0	2,190	89,851,	1,471	59,326,	719.0	30,525,407	66.03	TERCAPAI	NAIK	TURUN	cluster5
6		5.0	288.0	44,674,	169.0	21,339,	119.0	23,334,938	47.77	TIDAK TER	TURUN	TURUN	cluster7
7		6.0	3,075	173,122	1,591	84,942,	1,484	88,179,478	49.07	TIDAK TER	NAIK	TURUN	cluster7
8		7.0	2,469	63,490,	1,879	49,900,	590.0	13,590,482	78.59	TERCAPAI	NAIK	TURUN	cluster5
9		8.0	1,543	91,571,	795.0	54,217,	748.0	37,353,028	59.21	TIDAK TER	NAIK	NAIK	cluster2
10		9.0	213,	9,776,2	126,704	6,331,9	87,290	3,444,314,683	64.77	TERCAPAI	NAIK	NAIK	cluster4
11		10.0	521.0	17,866,	353.0	11,994,	168.0	5,871,261	67.14	TERCAPAI	NAIK	NAIK	cluster4
12		11.0	1.974	117.421	530.0	57.231	1.444	60,190,172	48.74	TIDAK TER	NAIK	NAIK	cluster1
13		12.0	634.0	31.770	259.0	16.105	375.0	15.665.036	50.69	TIDAK TER	NAIK	NAIK	cluster2
14		13.0	21.0	2 596 911	19.0	2 428 466	2.0	168 445	93.51	TERCAPAI	NAIK	NAIK	cluster0
15		14.0	981.0	36 193	751.0	28 903	230.0	7 289 873	79.86	TERCAPAI	NAIK	NAIK	cluster3
16		15.0	2 7 2 5	329 456	1.537	204 438	1 188	125 018 412	62.05	TERCAPAI	NAIK	NAIK	cluster4
17		16.0	177.0	4 969 121	177.0	4 969 121	0.0	0.0	100.0	TERCAPAL	TETAP	NAIK	cluster6
10		17.0	414.0	15 022	200.0	12 020	34.0	1 002 601	97.40	TERCARAL	NAIK	NAIK	cluster0
10		10.0	1 260	110,922,	795.0	72 629	573.0	29 190 760	65.54	TERCARAI	NAIK	NAIK	clustero
20		10.0	1,330	765 400	10	72,020,	0.0	30,100,750	100.04	TERCAPAL	TETAD	TETAD	cluster4
20		19.0	000.0	100,400	000.0	100,400	0.0	0.0	100.0	TERCAPAI	TETAP	TETAP	clustero
21		20.0	222.0	4,024,147	222.0	4,024,147	0.0	0.0	100.0	TERCAPAI	TETAP	TETAP	clustero
22		21.0	1,400	57,434,	535.0	25,445,	865.0	31,988,855	44.3	TIDAK TER	TURUN	TURUN	cluster/
23		22.0	428.0	9,051,527	366.0	8,110,587	62.0	940,940	89.6	TERCAPAI	NAIK	TURUN	clusters
24		23.0	2,249	148,257	1,246	77,602,	1,003	70,654,635	52.34	TIDAK TER	NAIK	TURUN	cluster/
25		24.0	155.0	4,619,470	142.0	4,383,164	13.0	236,306	94.88	TERCAPAI	NAIK	TURUN	cluster8
26		25.0	589.0	37,510,	572.0	36,421,	17.0	1,089,038	97.1	TERCAPAI	TETAP	TURUN	cluster8
27		26.0	718.0	33,115,	416.0	17,479,	302.0	15,636,177	52.78	TIDAK TER	NAIK	TURUN	cluster7
28		27.0	2,836	55,243,	1,349	25,564,	1,487	29,679,266	46.28	TIDAK TER	TURUN	TURUN	cluster7
29		28.0	1,334	30,985,	1,120	27,137,	214.0	3,847,585	87.58	TERCAPAI	NAIK	NAIK	cluster0
30		29.0	327.0	15,852,	281.0	13,062,	46.0	2,790,167	82.4	TERCAPAI	NAIK	NAIK	cluster0
31		30.0	1,379	40,147,	926.0	28,126,	453.0	12,021,090	70.06	TERCAPAI	NAIK	NAIK	cluster3
32		31.0	556.0	31,030,	324.0	20,404,	232.0	10,625,664	65.76	TERCAPAI	NAIK	NAIK	cluster3
33		32.0	6,088	148,995	4,193	99,970,	1,895	49,024,602	67.1	TERCAPAI	NAIK	NAIK	cluster4
34		33.0	594.0	49,768,	410.0	34,328,	184.0	15,439,676	68.98	TERCAPAI	NAIK	NAIK	cluster4
35		34.0	876.0	23,229,	552.0	14,428,	324.0	8,801,052	62.11	TERCAPAI	NAIK	NAIK	cluster4
36		35.0	405.0	17,432,	405.0	17,432,	0.0	0.0	100.0	TERCAPAI	TETAP	NAIK	cluster6
37		36.0	337.0	12,270,	132.0	7,034,686	205.0	5,235,339	57.33	TIDAK TER	NAIK	NAIK	cluster2
38		37.0	635.0	16,715,	367.0	9,730,674	268.0	6,984,362	58.22	TIDAK TER	NAIK	NAIK	cluster2
39		38.0	573.0	44,187	402.0	28,474	171.0	15,713,208	64.44	TERCAPAI	NAIK	NAIK	cluster4
40		39.0	897.0	23,391	656.0	16,266	241.0	7,124,626	69.54	TERCAPAI	NAIK	NAIK	cluster3
41		40.0	141.0	3 360 665	141.0	3 360 665	0.0	0.0	100.0	TERCAPAI	TETAP	TETAP	cluster6
42		41.0	11.0	2 205 752	11.0	2 205 752	0.0	0.0	100.0	TERCAPAI	TETAP	TETAP	cluster6
43		42.0	1 196	43 499	780.0	31 458	416.0	12 040 332	72 32	TERCAPAL	NAIK	TURUN	cluster5
44		42.0	1.062	156 497	645.0	122 242	419.0	22 144 419	95.02	TERCARAL	NAIK	TURUN	cluster9
45		44.0	991.0	70 296	414.0	49 007	577.0	21 289 385	60.21	TERCAPAL	NAIK	TURUN	cluster5
46		44.0	610.0	10,230,	442.0	6 909 120	177.0	4 007 607	62.02	TERCAPAL	NAIC	TUDUN	cluster5
47		40.0	0 15.0	01 205	9442.0	41.026	1 252	4,027,037	02.03	TIDAK TEP	NAIK	TUDUN	cluster5
47		47.0	2,194	01,280,	0+1.0	41,030,	1,303	40,249,017	50.48	TIDAK TER	TUDUN	TUDUN	cidSter/
48		47.0	989.0	28,033,	480.0	13,375,	503.0	15,258,266	46.71	TIDAK TER	TURUN	TURUN	cluster/
49		48.0	0/5.0	44,992,	357.0	31,046,	318.0	13,945,454	69.0	TERCAPAI	NAIK	TURUN	ciuster5
50		49.0	298.0	20,600,	149.0	12,600,	149.0	7,999,791	61.17	TERCAPAI	NAIK	NAIK	ciuster4
51		50.0	1,133	38,172,	663.0	24,093,	470.0	14,079,098	63.12	TERCAPAI	NAIK	NAIK	cluster4
52		51.0	1,169	24,327,	653.0	13,834,	516.0	10,492,953	56.87	TIDAK TER	NAIK	NAIK	cluster2
53		52.0	1,387	96,585,	578.0	50,338,	809.0	46,247,565	52.12	TIDAK TER	NAIK	NAIK	cluster2
54		53.0	160.0	4 986 255	109.0	3.342.965	51.0	1.643.290	67.04	TERCAPAI	NAIK	NAIK	cluster4

Table 6. The results of Cluster with parameter k

Table 7. Result	s of Cluster	r Parameters K-N	Ν
-----------------	--------------	------------------	---

No.	cluster	Total Instant
1	0	26
2	1	10
3	2	16
4	3	22
5	4	28
6	5	24
7	6	32
8	7	31
9	8	16

4.1. Influence Selection of Parameter Values k

In the test will be analyzed the effect of optimization parameters k value the success rate with algorithms clusterexpectation *Maximization*, The k value is the number of nearest neighbors for use as consideration in determining the number of cluster decision.

Distance parameter used to optimize the use of simulation data that euclidean distance and the Hamming distance, while the value of k used is k = 13. Based on the above data processing results, when using early data without any additional parameters obtained by the

number of clusters found and incorrect as many as 11 clusters of 66% then when using the optimization parameters obtained by the number of clusters k sebnayak 9 and can minimize incorrect cluster to 64%.

5. Conclusion

By using clustering algorithms can mengdentifikasi Cluster EM-attainment status and budget plans in the coming year. In the process of this grouping K-NN with k = 13 an algorithm and can be used for the type of data berimensi high. Determination of parameter k in K-NN algorithm can affect and improve the number of clusters in advance.

References

- [1] Connolly, Thomas, C. B 2010, Database Systems: A Practical Approach to Design, Implementation, and Management Fifth Edition: Pearson Education Inc.
- [2] Cuzzocrea, Alfredo 2011, warehousing Data and Knowledge Discovery, Springer-Verlag Berlin Heidelberg, London.
- [3] Hermawati, Fajar Astuti, 2013. Data Mining. ANDI Publisher: Yogyakarta.
- [4] Kimball, R, Margy R, Warren T, Joy M and Bob B 2008, The Data Warehouse Lifecycle Toolkit, Wiley Publishing Inc., Canada.
- [5] Indrajani 2009 Database System In Package Five In One, PT.Elex Media Komputindo, Jakarta.
- [6] Ponniah, Paulraj 2010, Data warehouseing. Canada: John Wiley & Sons Inc.
- [7] Tantra, Rudi 2012, Project Management Information Systems, Andi Offset, Yogyakarta.
- [8] Jiawei Han and Micheline Kambar 2010, Data Mining Concepts and Techniques, Verlag Berlin.
- [9] Oded Maimon and Lior Rokach, 2010, Data Mining And Knowledge Discovery Hanbook, Springer Science.
- [10] Ernastuti, S. &. (2010). Graduation Prediction of Gunadarma University Students Using Algorithm and C4.5 Naive Bayes Algoritmh.
- [11] Gunadi, G., Sensuse, D., I., 2012, Application of Data Mining Methods Market Basket Analysis to book the product sales data by using algorithms Apriori and Frequent Pattern Growth (FP-Growth), MKom TELEMATIKA Journal, Vol. 4, No. 1, 118-132.
- [12] Gorunescu, F. (2011). Data Mining Concepts and Techniques Models. Craiova: Springer.
- [13] Hastuti, K. (2012, June). ANALYSIS COMPARISON OF CLASSIFICATION OF DATA MINING ALGORITHM National V.Seminar Applied Information & Communication Technology (979 - 26 - 0255-0), 241 249.
- [14] Ian H. Witten, f. E. (2011). Data Mining: Practical Machine Learning Tools and Techniques (3rd ed.). (ASBurlington, Ed.) United States of America: Morgan Kaufmann.
- [15] Kalyankar, Q. &. (2010). Drop Out Feature of Student Performance Data Using Decision Tree forAcademic techniques. Global Journal of Computer Science and Technology, 2-4.
- [16] Mardiani, 2014, Comparison Algorithm K-Means and EM for Clusterisasi Value Based Home School Students, CITEC Journal, Vol. 1, No. 4, 316-325
- [17] Oyelade, O. &. (2010). Application of Kmeans Clustering algorithm for predicting of Students AcademicPerformace. International Journal of Computer Science and Information Security, 292-295.

- [18] Syaifullah. (2010). Implementation of Data Mining Algorithm Apriori Sales System, Amikom, Yogyakarta.
- [19] Tahyudin, I. (2013, December). Comparing Classification Of Data Mining Algorithm to Predict the Graduation Students on Time. Information Systems International Conference (ISICO).
- [20] Vercellis. (2009). Business Intelligence: Data Mining and Optimization for Decision Making Decision Making. John Wiley & Sons Inc: Southern Gate.
- [21] Vrettos, K. &. (2009). Sentivity Analysis of Neural Network for Identifying the Factors for Success College Students. World Congress on Computer Science and Information Engineering. (978-0-7695-3507-4).
- [22] Yanto. R, Khoiriah. R., 2015, Implementation of Data Mining with Apriori Algorithm Method in Determining Drug Purchasing Patterns, CITEC Journal, Vol. 2, No. 2, 101-113.