
IOP Conference Series: Materials
Science and Engineering

     

PAPER • OPEN ACCESS

Optimal sea floor placement of the oil/gas
production equipment
To cite this article: S S Arsenyev-Obraztsov et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 700 012011

 

View the article online for updates and enhancements.

You may also like
UK perspective research landscape for
offshore renewable energy and its role in
delivering Net Zero
Deborah Greaves, Siya Jin, Puiwah Wong
et al.

-

Effect of Seabed Instability on Pile Soil
Pressure
Yongli Zhang, Yi Zhao and Zhenxia Yuan

-

A quality factor of forecasting error for
sounding data in MBES
Tian Zhou, Weijia Yuan, Yang Sun et al.

-

This content was downloaded from IP address 3.137.161.222 on 06/05/2024 at 16:40

https://doi.org/10.1088/1757-899X/700/1/012011
https://iopscience.iop.org/article/10.1088/2516-1083/ac8c19
https://iopscience.iop.org/article/10.1088/2516-1083/ac8c19
https://iopscience.iop.org/article/10.1088/2516-1083/ac8c19
https://iopscience.iop.org/article/10.1088/1742-6596/1624/4/042071
https://iopscience.iop.org/article/10.1088/1742-6596/1624/4/042071
https://iopscience.iop.org/article/10.1088/1361-6501/ac6223
https://iopscience.iop.org/article/10.1088/1361-6501/ac6223
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssBviFQZoAJRTq4WTeM0TMkLutj4UVYNVv_oD9vMINeYbIsJgSRT19OzeUGPG40_MYjdVQqqVYcpOyN86jQIIScy0kxOCgaiCKM25bWYrOKDP5JI3NVH37MqukeAgVzhLocLyECED3PhMl8GHIRtQYu1qd9rHhMiWHUEoytW3iJft7DO-dwcKVLnVIp99LC42cbBs3zKUEklcky09xGCurbyrl7eZdTnQJ4eU5F1kgkogrovNpkTkTwQ2qSoXJccqOxgtFlK-u45Z45oKqaA24QdhZ_X2zgFF3VD03PILStcAIZCUhA2Wo0vDgI3AiaPFNKYTMLFBrHxNyBdxah7eucs_bRRg&sig=Cg0ArKJSzCrf38A2iPuo&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

COTech

IOP Conf. Series: Materials Science and Engineering 700 (2019) 012011

IOP Publishing

doi:10.1088/1757-899X/700/1/012011

1

Optimal sea floor placement of the oil/gas

production equipment

S S Arsenyev-Obraztsov, A I Ermolaev and A M Kuvichko
Russian State Gubkin University of Oil and Gas, Russia

Corresponding author: arseniev@gubkin.ru

Abstract. In the construction designing of oil field surface facilities, exists a problem of the 
seabed production equipment optimal placement. As an initial approximation, we can represent 
this task in the form of the linear Boolean programming problem. An application of routine 
methods of discrete programming can theoretically give the desired solution. However, these 
methods do not take into account the specific nature of the problem. This problem belongs to the 
NP class. So we can run into significant computational difficulties. This situation is typical for 
construction of the ground surface or subsea located facilities for real oil/gas fields. To overcome 
it, we propose to replace a discrete programming model with a linear programming one, which 
takes into account problem-specific properties. Also, we present examples of the application of the 
proposed parallel optimization algorithms. Input data for them: the seabed profile, geometry, and 
space distribution of oil/gas reserves. Optimization problem objective function is the penalty for 
the irrational placement of seabed production equipment elements.

1. Introduction
The problems and tasks associated with the construction and placement of the seabed systems for
the development of offshore oil/gas fields are of great importance for the economic effectiveness
of production projects. There are several reasons for the subsea field development: proximity of
deposit to the seacoast, deep enough seabed, the high total amount of initial reservoir energy
and absence of need for processing and storing facilities preceding the transportation stage.

The development of offshore fields is carried out with the usage of expensive Seabed
Production Complexes (SPC). Therefore, the losses from irrational facilities design and
equipment placement dramatically increase. It is one of the main reasons for the usage of three-
dimensional multi-phase/multi-component fluid flow simulators during the field development
plan design. They are implanted into the computational comparison cycle using different
optimization algorithms. In this paper, we analyze the procedures for optimal placement of
the SPC units: wells, subsea production elements, and central gathering station. Under the
term - subsea production element, we mean sub water platform with placed wellhead equipment
and facilities for connecting wellheads to the oil/gas gathering network.

There is a significant number of articles devoted to well-placement optimization [1, 2, 3], and
many others. For several years we develop an approach to the well-placement problem [4, 5, 6],
which differs from similar research works in:

(1) We do not use technical and economic indicators: NPV, cumulative production, and some
other effectiveness estimators. As optimization criteria, we select heuristic rules used for
the reasonable deposit development, and tested by long-term field practice;
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(2) This task can be set as the discrete programming problem which we further replace with
the solution of a series of linear programming problems. reasonable

Both items increase the computational efficiency of optimization procedures, especially for
the solution of high-dimensional problems common for designing development plans for oil and
gas fields. Without fundamental changes, we can use proposed well-placement algorithms for the
optimal placement of other elements of the SPC: subsea production facilities, a central gathering
unit, and some other.

2. Optimization of the SPC elements placement
The following sequence of operations can approximately express the algorithm for SPC elements
allocation on the seabed:

(a) determine a set of sections of the pay area where it is reasonable to locate bottom holes
(the number of wells is predefined);

(b) determine the geometrical configuration (chart) of the horizontal wellbore (the length of
the horizontal wellbore is preset);

(c) determine the allocation of the subsea production units (the number of units is pre-
specified);

(d) determine central gathering unit allocation.

Initial information for the well-placement problem includes reservoir geometrical parameters,
data about the deposit reserves spatial distribution, porous medium permeability, and reservoir
fluids saturation. The generation of the initial information for optimization algorithms begins
with the subdivision of the pay area into square blocks of equal size. Block sizes should be
suitable for placing a full-sized horizontal wellbore in it. With the usage of geological modeling
software for each block, we estimate the hydrocarbon reserves and other characteristics affecting
well-placement. Then for each block, we evaluate the ”expediency indicator” in terms of possible
bottom hole placement in it.

Parameters for well-placement problem are:

• n and s - are numbers of blocks and wells, respectively, n > s, and n/s – is an integer
(if this condition violated, then ”dummy” blocks with zero reserves must be added so that
ratio of the changed number of blocks to the number of wells equals to some integer);

• cij - ”remote production fine” - a penalty for production of oil/gas from block j by well
bottom hole placed in the block i, (i, j = 1, 2, ..., n). It also can be interpreted as an
”inclusion price for block j to be in the block i pay zone”.

Problem solution is a set of variables {xij} such that xij = 1 if block j included in the area of
influence of the well located in the block i, and xij = 0 otherwise. The term ”area of influence”
means a set of blocks closest (adjacent) to the block with well. We assume that these blocks
provide production well by the main part of the inflow of formation fluids. From the definition
of solution it follows: if xii = 1, then the block i contains the bottom of the well i, if xii = 0,
then there is no well in the block i.

Taking into account proposed assumptions and notations, the solution of this problem is the
set of variables {xij}, satisfying the following system of terms and conditions [4]:
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n∑
i=1

n∑
j=1

cijxij → min
x
, (1)

n∑
i=1

xii = s, (2)

n∑
j=1

xij =
(n
s

)
xii, i = 1, n, (3)

n∑
i=1

xij = 1, j = 1, n, (4)

xij ∈ {0, 1}, i = 1, n, j = 1, n. (5)

The objective function (1) is a total penalty for the irrational well-placement. The equality
(2) is a limitation for the number of wells placed on the oil field. Restrictions (3) are equivalent
to the condition that the area of influence of each well contains the same number of blocks.
The constraints (4) mean that any block can belong to only one area of influence. If (n/s) is
an integer, then from the constraints (3) and (4) follows fulfillment of the constraint (2) [4]. If
any block (for example, l-th) is forbidden for well placement, then the following conditions are
added to the problem (1)-(5): xlj = 0, (j = 1, ..., n).

In [4, 5, 6] for the calculation of feasibility indicators, it is proposed to use the following
heuristic rules for rational well-placement. The minimum size list of them looks like:

(a) it is desirable to guarantee the shortest possible distance from the well bottom to any point
of the reservoir;

(b) also it is desirable to bring wells closer to the blocks with larger reserves.

Later this set of rules can be extended or changed.
The optimality criterion (1) expresses the desire to diminish the total penalty for violation

of these rules. According to them, we can define values of cij as:

cij =

{
0, j = i

λ1−γj · rγij j 6= i
, (6)

where

λj =
Vj

max{Vk}
1≤k≤n

, rij =
Rij

max{Rkl}
1≤k≤n, 1≤l≤n

, γ ∈ [0; 1].

Let Vj - oil/gas reserves of the block j; Rij - distance between the centers of blocks i and j;
γ - expert estimation of the ”distance” indicator importance (0 ≤ γ ≤ 1). From (1) it follows,
that when we enlarge a distance from the well to the block with large reserves penalty increases.

To improve the adequacy of the model in [6] it is proposed to include into the set of input
parameters, variables characterizing resistance of medium to the fluid flow: ωi = µi

kihi
, where ωi

– coefficient of filtration resistance, µi – viscosity of fluid, ki – permeability, hi – fluid-saturated
thickness of the block i. After that, we replace this set of blocks with a graph. Vertices of this
graph are the centers of blocks, and arcs are lines connecting adjacent vertices. By adjacent
vertices, we usually mean centers of adjacent blocks. Adjacent blocks are blocks that have a
common boundary. The length of each arc is an average coefficient of flow resistance for two
adjacent blocks. Rij - the distance between blocks i and j, is the minimum total length of arcs
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connecting them. It means that for each pair of vertices; we needed to solve the shortest path
problem [7].

After selecting blocks containing wells, we need to determine the profile of a horizontal
wellbore. The mathematical definition of this problem is the following. After we selected blocks
for a well and SPU (that the well connects to), we can define azimuth of a wellbore horizontal
part as an azimuth of the vector directed from the SPU (XSPU ;YSPU ) to the well (Xwell, Ywell)
location. We take as the initial point (Xin;Yin) (formation entry) and as the terminal point
(Xout;Yout) (well bottom) of the horizontal part of the well. We now consider only X and Y
point coordinates; Z-coordinate to be optimized further. Let us define the depth of the horizontal

part of the wellbore as 0 at the formation entry point. and L =
√

(Xin −Xout)
2 + (Yin − Yout)2

at well bottom point. We then define a set of points (Xi;Yi) for every i = 1,m as:

Xi = Xin +Xout
li
L
, (7)

Yi = Yin + Yout
li
L
, (8)

where li is the measured depth at point i:

li = L · i− 1

m− 1
, i = 1,m. (9)

At every point (Xi;Yi) defined above we can get the limiting Ztopi and Zboti values
from reservoir top and bottom surfaces, respectively, and get a Z-value Zi between these
limiting surfaces.We then take a desired 3D-property (like remaining recoverable fluid-in-place,
permeability, and some other), and we can calculate its value D at any (Xi;Yi;Zi), but since
the number of 3D-grid blocks between top and bottom surfaces is limited, there could be only
a limited number of Z-values at every layer i. We will sample Zi at 3D-property cell centers.
The problem is to maximize the total sum of values at planned wellbore points, but to keep the
inclination angle increase/decrease value not greater than a defined angle I (here we only vary
inclination (vertical angle), but not azimuth). Thus, the following problem to be solved:

m∑
i=1

D(Xi;Yi;Zi)→ max
Zi

, (10)

Zboti ≤ Zi ≤ Ztopi , i = 1,m, (11)∣∣∣∣∣∣arctan

 Zi+1 − Zi√
(Xi+1 −Xi)

2 + (Yi+1 − Yi)2

∣∣∣∣∣∣ ≤ I, i = 1,m− 1, (12)

The problem (10)-(12) can be solved using standard dynamic programming and a Bellman’s
Principle of Optimality [8], since we can split it to subproblems at layer i.

The definition of a mathematical model for optimal placement of seabed production units
(SPU) begins with the replacement of deposit domain by a set of equal blocks. We can install
SPU in any of them. Let m be the total number of SPUs. Other initial parameters are: M the
number of SPU, and K the maximum allowable number of wells in SPU. We state that KM ≥ s,
where s is the number of wells (number of bottom holes). Let Ci be the cost of construction of
SPU in the block i, i = 1, 2, ...,m; wij is the construction cost of well connecting the center of
block i to bottom hole j, j = 1, 2, ..., s; Rij is the distance between block j with a bottom hole
in it and the center of block i; R is the maximum allowable distance between the bottom hole
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and SPU. Let gij be coefficients such that if Rij ≤ R, then gij = wij ; if Rij > R, then gij = W ,
where, W � max{wij}

i,j

.

Now problen solution can be defined as two groups of variables {xij} and {yi}, where xij = 1,
if the bottom hole j is connected to the SPU located in the block i, and xij = 0, otherwise;
yi = 1, if there is a SPU in block i, otherwise yi = 0.

Hence to solve the problem, we need to identify sets {yi}, {xij} such that:

m∑
i=1

s∑
j=1

gijxij +
m∑
i=1

Ciyi → min
x.y

, (13)

m∑
i=1

yi = M, (14)

n∑
j=1

xij ≤ Kyi, i = 1,m, (15)

m∑
i=1

xij = 1, j = 1, s, (16)

xij ∈ {0, 1}, yi ∈ {0, 1}, i = 1,m, j = 1, s. (17)

The problem of central gathering node (CGN) placement is defined by the mathematical
model (13)-(17), in which s equals the number of SPU, M = 1, K = s, and inequality constraints
(15) are replaced by equalities. In addition, gij is the cost of building of a gas flow-line between
SPU j and the CGN, if CGN is placed into the block i, and Ci is the cost of building the CGN in
the block i, i = 1, 2, ...,m, j = 1, 2, ..., s. To solve the problem, we need to inspect all acceptable
options for the CGN placement. As the best, we choose one for which the total cost of building
gas flow-lines and CGN will be minimal.

3. Method for solving problems (1)-(5) and (13)-(17)
The specifics of problem (1)-(5) are: First, we can represent the set of desired solution variables in
the form of a square matrix; Second, if by some consideration values are assigned to the elements
of the main diagonal of this matrix, then the original problem is converted to the classical
transport problem with the cost criterion (T-problem)[9]. The proposed solution method uses
these features. Below we present a description of this method applied for the problem (1)-(5).

Let consider some assigned of variables {xii} satisfying constraints (2) and (5), i.e. {xii} is a
set of the one of several admissible well placement. Consider the sets A, B and C: A = 1, 2, ..., n,
B = {i : xii = 1}, C = {i : xii = 0}, i.e.

A = B
⋃
C, B

⋂
C = ∅, |A| = n, |B| = s, |C| = n− s (18)

Then, for a given set {xii}, it follows from (2) that xij = 0 for i ∈ C & j ∈ A. Taking into
account (18), problem (1) - (5) will be:
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∑
i∈B

∑
j∈C

cijxij → min
x
, (19)

∑
j∈C

xij =
(n
s

)
− 1, i ∈ B, (20)

∑
i∈B

xij = 1, j ∈ C, (21)

xij ∈ {0, 1}, i ∈ B, j ∈ C. (22)

Let’s analyze the problem (19) - (22). First, the right-hand side parts of constraints (20)
and (21) are positive integers. Therefore, all the support plans for this problem will be integer-
valued [10]. Second, from (22) we obtain that xij ≥ 0, and taking into account (21) we get the
”automatic” fulfillment of xij ≤ 1. Therefore, conditions (22) can be replaced by restrictions on
the sign of the unknown variables:

xij ≥ 0, i ∈ B, j ∈ C. (23)

Third, (n− s) - the sum of the right-hand sides of the constraints (20) equals to the sum of the
right-hand side parts of constraints (21). Therefore, with a fixed set {xii} satisfying constraints
(2) and (5), problem (1) - (5) turns into model (19) - (21), (23), which is a classical transport
problem. Therefore, one of the known methods, for example, the method of potentials [9], can
solve this problem. Thus, any admissible set {xii} uniquely defines some valid solution for the
original problem (1) - (5). Therefore, the method for solving problem (1) - (5) is reduced to
generating sets {xii} satisfying constraints (2) and (5), solving T-problem (19) - (21), (23) for
each and choosing the best in terms of criteria (1)..

Let us estimate z - the lower bound for the reasonable number of test sets {xii} in the
Monte-Carlo optimal solution search. By this, we mean that conducting #z tests we get an
admissible result with a preset probability P . Lower bound for z we can obtain from the
following considerations. Let N be the number of all admissible sets of {xii}, and D(L) be best
solutions subset of size L for the problem (1) - (5) (|D(L)| = L). We assume that if at least one
of the test sets {xii} ∈ D(L), then problem (1) - (5) is solved. Let Q be the probability that the
test solution of the problem (1) - (5) belongs to the set D(L). It is clear that Q = L/N . Let P
be the predefined probability that at least one of the #z test sets belong to the set D(L). For a
known value of N and given values of P and L, an estimation of #z we can get as the solution
of the equation:

P = 1− (1− L/N)z

which gives:
z = ln(1− P )/ ln(1− L/N)

We need to emphasize that the use of any enhanced random search algorithm or the
application of additional information in the process of sets {xii} generation could significantly
reduce this estimation.

For the case of a large number of numerical computations, it is better to use high-performance
computing systems. If the total amount of computation is relatively small, then workstation with
general-purpose graphics accelerators (NVIDIA, AMD) or many-core computing systems based
on Intel Xeon Phi, Sunway 26010, and some other processors will be a good option. From our
point of view, the Sunway TaihuLight supernode is the best choice for conducting optimization
with the usage of hydrodynamic simulators.
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Since the total amount of memory required for the generation of the input sets and subsequent
transport problem solution is not large, the calculations for one dataset can be entirely performed
on the CUDA core or the fast PCE core in Scratch Pad Memory of the SW26010 processor
[11]. This approach can significantly speed up calculations. The parallelization of the above
algorithms is obvious.

The application of this method for the solution of the problem (13) - (17) requires preliminary
transformation. By adding s∗ = KM − s fictitious wells to the model (13) - (17) inequality
constraints (17) can be converted into equality constraints. For the model including fictitious
wells coefficients should be set to zero, i.e. cij = 0. Then the above method can be applied in
this case, only instead of the sets {xii}, it requires to generate sets {yi} satisfying constraints
(14) and (17). The set {yi} represents one of the possible SPU (or CGN) placements.

4. Example
We apply the described algorithm to solve a test problem. We have created a sample (artificial)
model similar to models of deepwater gas fields. We have divided this model into square blocks
1×1 km2. The criterion we’ve used for (6) to calculate cij in (1) was a composite criterion

Vj = Gj
0.5 × kHj

0.4 × Pj
0.1

, where Gj is a normalized gas-in-place for the j-th cell, kHj is a
normalized kH property (cell permeability multiplied by cell height), and Pj is a normalized
pressure. The map of the composite criterion for this test field is shown on the Figure 1.

Figure 1. A representation of the used test field model: color scale represents the composite
criterion value from the lowest (green) to the highest (red).

This model contains 492 blocks. Dividing total (recoverable) reserved to average produced
gas estimate, we’ve decided to place 12 wells on this gasfield. We have tested different values
of the parameter γ in equation (6). It is rational to select (as described in [6]) γ in the range
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from 0.05 to 0.25. We have selected 3 γ values: 0.05, 0.15 and 0.25. We have decided to pick
well positions for γ = 0.15, as this case looks more realistic in terms of engineering criteria [4],
however a question of selecting γ depends on the specific field. After running the iterative solver
[12], we got the following results (Figure 2, (a)). The wells were located in blocks numbered 48,
63, 118, 125, 182, 209, 236, 259, 311, 362, 400 and 454. The resulting zones corresponded to
cells are shown at Figure 2, (b). We count the number of times that a j-th block appears in the
(local) optimal well placement (Figure 2, (c)). The distribution of (local) optima, i.e. the values
of the objective function vs. the theoretical lognormal distribution (with an estimated mean (ξ)
and standard deviation (σ)) is shown at Figure 2, (d).

(a) (b) (c)

(d)

Figure 2. For γ = 0.15 (a) wells (crossed bold square block) optimal placement, color represents
criterion Vj values from smallest (blue) to largest (red); (b) zones for wells (crossed block)
distribution, color represents different zones; (c) the number of times that the block j has
appeared in the (local) optimal solution, color represents values from smallest (green) to largest
(red); (d) cumulative local optima distribution: solution vs. theoretical lognormal distribution
with an estimated mean ξ and standard deviation σ.

For this location of wells, we then solve the problem of placing several SPU (13)-(17) having

M set to 3 in (14). By doing this, we can drop the term
m∑
i=1

Ciyi in (13) since it turns into



COTech

IOP Conf. Series: Materials Science and Engineering 700 (2019) 012011

IOP Publishing

doi:10.1088/1757-899X/700/1/012011

9

a constant and can be eliminated (since the cost values Ci are assumed the same for all i).
Nevertheless, we use the constraint (15) in a way to connect any number of wells to an SPU. We
also assume that the cost of a length unit of a well is equal for all wells. Using these assumptions,
gij in (13) morphs into a simple distance from block i to j. The complexity of this problem for
492 cells, 3 SPUs and 12 wells is C3

492× 12× 3 = 710221680 cases, so it could be solved directly.
We have solved this problem for the test field model having wells placed into blocks defined

above (Figure 2). The solution is shown at Figure 3, (a). The optimal result was unique, and
SPUs were placed into blocks with numbers 118, 209, and 379. Note that tow first SPUs were
placed in blocks with wells, while the thirds one between wells. We further solved the problem of
placing a CGN for there three SPUs using the same approach. The solution is shown at Figure
3, (b). This position of the CGN guarantees optimal sum of distances; again, CGN was located
at block number 209, where a well and an SPU were already placed.

(a) (b)

Figure 3. For γ = 0.15 (a) SPU (crossed block) optimal placement; well (bold block) 
connections to SPUs are shown as dashed lines; color represents criterion Vj values from smallest 
(green) to largest (red), (b) zones for wells (bold block) distribution, SPUs (crossed blocks) and 
CGU (bold round); color represents different zones.

We also solve the problem of optimal well-placement inside the formation (10)-(12) for the 
found set of locations of wells and SPUs. As for the desired 3D-property, we have selected kH 
above gas-water contact. The maximal inclination variation angle I is set to 2 per depth step. 
An example of the optimal position for the well in block number 259, presented in Figure 4.

5. Conclusion
The presented models and optimization algorithms allow taking into account the experience and 
knowledge of specialists in the design of oil and gas deposits development projects and using the 
capabilities of mathematical tools to support selected decisions. The primary purpose of models 
and algorithms is a creation of the preliminary set of optional projects for the development and 
reservoir surface facility construction for oil and gas deposits, from which subsequent choose of 
the best option needs to be conducted.

The advantages of the proposed approach for solving the problems of production technological 
elements placement include: First, a significant reduction in the number of calls to hydrodynamic



COTech

IOP Conf. Series: Materials Science and Engineering 700 (2019) 012011

IOP Publishing

doi:10.1088/1757-899X/700/1/012011

10

Figure 4. Optimal placement of the well 259 inside the formation with kH set as the target
3D-property. The well is shown in white color.

simulators; Second, the possibility of using linear programming methods; Third, the proposed
algorithms are well suited for different parallelization technologies. All this allows us to proceed
for solving optimization problems of high dimensions, which is specific for the production project
design for oil and gas fields.
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