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Abstract. Zr,Al,Cs/SiC composite ceramics were successfully fabricated from the powder
mixture of Zr, Al, C and SiC by spark plasma sintering method. The composition-dependent
densification, phase evolution, microstructure and mechanical properties of the composite
ceramics were studied. With increasing the SiC content in the starting powder mixture, the
densification behavior of sintered samples was promoted. It is found that the as-sintered
products are mainly composed of Zr,Al4Cs matrix and SiC reinforcement, and the fine SiC
particles tend to disperse on the matrix grain boundaries. Besides, the addition of SiC particles
can evidently hinder the coarsening of Zr,Al,Cs grains. Both the Vickers hardness and Young’s
modulus of composites ceramics gradually increase as increasing the SiC content. The fracture
toughness of the composites decreases first then increases with the increase in the SiC and the

Zr,Al,Cs/30v0l%SiC sample possesses the maximum value of 4.4MPa-m'?.

1. Introduction

Compared with the corresponding binary carbide ZrC, the Zr-Al-C compounds (including Zr,Al4Cs,
Zr;Al4Cs and Zr,Al;Cs)show superior oxidation resistance, high fracture toughness, and excellent
room and high-temperature stiffness, being promising high-temperature structure ceramics[1-4]. The
Zr-Al-C compounds also exhibit comparable high-temperature mechanical properties, the Young’s
modulus decreased slowly with increasing temperature and the Young’s modulus was 293 GPa at
1580 °C, which is about 81% of that at room temperature. At the same time, the strength at 1400 °C
was 371 MPa, which is about 10% higher than that at room temperature. These properties make it
attractive candidate for high-temperature structural applications in aerospace.

However, as a high-temperature structural material, the fracture toughness, hardness and oxidation
resistance of Zr,Al4Cs ceramics at high temperature is still unsatisfactory, which restrict its wider
application. Recently, a number of works have been published on improving the mechanical properties
of Zr,Al,Cs. Owing to the light weight, high hardness and strength, superior high temperature
oxidation resistance[5-6], the incorporation of second phase SiC particles into Zr,Al4Cs significantly
improve the hardness, fracture toughness, and oxidation resistance[7-8]. However, to the best of the
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authors’ knowledge, few studies have been carried out on the composition (SiC volume contents)-
dependent mechanical properties of Zr,Al4Cs/SiC composite ceramics in the open literature.

In the present work, therefore, the Zr,Al,Cs/SiC composites were prepared using Zr, Al, graphite,
and SiC powders as initial materials by spark plasma sintering process. The effect of SiC content on
the densification, phase evolution, microstructure and mechanical properties of the composites were
investigated in detail. The related mechanism was also discussed.

2. Experimental procedures

Commercially available powders of Zr (99.9%, 10 pm, Beijing mountain technical development center
for non-ferrous metals, China), Al (99.99%, 8 um, Shanghai chemical reagents of Chinese medicine
group, China), graphite (99.9%, 1 um, Shanghai capable graphite Co. Ltd., China), and SiC (99.5%,
Spm, Weifang Kaihua Micro-powder Co. Ltd., China) were selected as raw materials for the synthesis
of Zr,Al,Cs/SiC composites.

The molar ratios of starting powders were selected to 2Zr/6.2A1/4.8C, in order to compensate the
loss of Al at higher temperatures, off-stoichiometry molar content of Al were used. Finally, the
Zr,Al4Cs/SiC composites with 0 vol%, 10 vol%, 20 vol% and 30 vol% SiC were obtained and
designated as ZS0~ZS3, respectively.

The mixture of initial powders with the designed composition was mixed in an agate mortar, and
put into graphite crucibles of 15 mm in diameter and finally spark plasma sintered in vacuum (model-
1050, Sumitomo Coal Mining Co. Ltd., Tokyo), under a temperature of 1800 °C for 3 min with a
uniaxial pressure of 20 MPa. The temperature was measured by means of an optical pyrometer
focused on to the sintered sample through a small hole in the die. The detailed operation and sintering
process of spark plasma sintering (SPS) was reported in the previous papers[9-10].

The open porosity of the sintered products was determined by Archimedes’ immersion method
with water as the immersing medium. The microstructure of ceramic samples was studied by using X-
ray diffraction (XRD, X’Pert PRO-PANalytical) with Cu Ka radiation. The polished surface and
fracture morphologies of sintered ceramic samples and the surface and cross-sectional morphologies
of the samples after high-temperature oxidation were observed by using scanning electron microscope
(SEM). The grain sizes of samples were determined from SEM images using the average of length and
width from 50 randomly selected grains. The testing details of the Young’s modulus (E), the Vickers
hardness and fracture toughness of the ceramic samples were reported in the previous papers[9-10].
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Figure 1. the XRD patterns of the composites: (a) ZSO0,
(b) ZS1, (c) ZS2, (d) ZS3.
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3. Results and discussion

Figure 1 shows the XRD patterns of the composites. As shown in Figure 1(a), the peaks of Zr,Al4Cs
was not detected in the SPS sintered sample, and the main peaks were related to the Zr,Al;Cs phase.
However, with the increase of the content of SiC, only a traces amount of Zr,Al;Cs was detected,
besides the main phase of Zr,Al4Cs, which indicates SiC played a key role on the synthesis of
Zr2A14C5[1 1]

The density and open porosity of samples sintered at 1800 °C for 3 min as a function of SiC content
is shown in table 1. The density of Zr,Al,Cs/SiC composite gradually decreases with the content of
SiC increasing. The density increases due to a smaller density of 4.5 g/cm’ for Zr,Al,Cs than that of
3.22 g/em’® for SiC[2, 6]. It can be seen that the open porosity decreased with the increase of SiC
volume content and all the composite ceramics have much lower open porosities only around 0.06-
0.21%, indicating that the desification of the composite ceramics are easier to achieve due to the
existence of SiC which is densified.

Table 1. Open porosity, aspect ratio of Zr,Al4Cs grains, Vickers hardness and Young’s modulus
of samples with different SiC volume contents

Samples Density  Open Diameter of  Aspectratio  Vickers’ Young’s
(g/em’)  porosity elongated of Zr,Al4,Cs  hardness modulus (GPa)
(%) grains (um) grains (GPa)
Ovol% 4.3121 0.21 2.85+0.25 4.10+0.94 10.6+0.3 320+20
10vol% 4.2076 0.17 3.68+0.45 3.15+0.85 11.0+0.3 340+30
20vol% 4.0392 0.11 3.2840.35 4.05+1.05 12.7+£0.4 355425
30vol% 4.0108 0.06 2.35+0.45 4.35+1.15 15.0+0.4 365+25

Table 1 compares the diameter and aspect ratio of elongated Zr,Al4Cs grains for Zr,Al4Cs/SiC
samples. The aspect ratio of Zr-Al-C grains of pure Zr-Al-C ceramic is 4.10 £ 0.94. As the volume
content of Zr-Al-C decreases from 90 vol.% to 70 vol.%, the aspect ratio of Zr-Al-C first decreases
from 3.15 £ 0.85 for ZS1 and then apparently increases to 4.35+1.15 for ZS3. With the increase of SiC
content, the diameter of elongated Zr,Al;Cs grains decreased as a consequence of the pinning effect of
SiC on the grain-boundary. As discussed above, the grain size of Zr,Al4Cs matrix decreases with the
increase in the SiC content, which suggests that the addition of SiC particles can evidently hinder the
coarsening of Zr-Al-C grains, and the restriction in grain growth could further improve the
densification and the material’s stability at elevated temperature during sintering [12].

Vickers hardness and Young’s modulus of Zr-Al-C-based composite as function of SiC content are
listed in Table 1. It can be seen that the Vickers hardness and Young’s modulus increase gradually
with the increase of SiC volume content. Compared to ZrB, and SiC, Zr,Al,Cs has a low hardness of
about 11 GPa [3], the incorporation of SiC could effectively improve the Vickers hardness of the
composites. The intrinsic Young’s modulus of SiC was higher than Zr-Al-C. In addition, the ceramics
with the lowest porosity and lower grain size of the matrix. The ZS3 sample exhibits relatively higher
values of Vickers’ hardness and Young’s modulus.

Figure 2 shows the polished surface morphologies from SEM backscattered electron images of
samples with different compositions of Zr-Al-C and SiC volume contents. It is clearly observed that
there are two distinct phases which have different grain shape and sizes. Combining with the analysis
of XRD and EDS (not shown), the columnar or plate-like gray grains are identified as Zr-Al-C grains
and the dark particles are SiC grains. As shown in the figures, the SiC particles disperse
homogenously among the Zr-Al-C grains, which was helpful to reinforce the mechanical properties.
The matrix grain size of the products decreases significantly as the SiC content increase, and no any
pore could be observed in the SiC containing composites.
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Figure 2. BESEM images of the polished surfaces of composite
ceramics: (a) ZS0, (b) ZS1, (c) ZS2, (d) ZS3.
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Figure 3. the features of fractured surfaces of the composites with
different SiC content: (a) ZS0, (b) ZS1, (¢) ZS2, (d) ZS3.

Figure 3 shows the SEM fractured surfaces of samples with different compositions of Zr-Al-C and
SiC volume contents. As shown in the figures, the pure Zr-Al-C ceramic and all the Zr,Al,Cs/SiC
composite ceramics are almost densified and pores are hardly observed. It can be seen that the mode of
fracture of monolithic Zr-Al-C is transgranular, wherever the grain size is large, and therefore the
fracture surface is flat, as shown in Figure 3(a). The fracture surfaces of Zr,Al;Cs/SiC composite
ceramic samples are relatively rough and exhibit an evident combination fraction mode of inter-
granular and trans-granular fracture as shown in Figure 3(b)-3(d).

The fracture toughness values of the compositions are depicted in Figure4. The fracture toughness
of Zr,Al4Cs/SiC composite ceramics firstly decreases and then increases with increasing the SiC
content. Among them, the composites reinforced with 30 vol% SiC exhibited the highest fracture
toughness of 4.4 + 0.18 MPa-m"”. It can be seen from Table 1 that the maximum average aspect ratio
of Zr-Al-C grains was estimated to be 4.35+1.15 for ZS3.1t is generally believed that elongated grains
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with large aspect ratio benefit the fracture toughness of ceramic matrix[10].In addition, the higher
fracture toughness of ZS3 is attributed to the relatively finer and homogeneous microstructure, as
shown in Figure 3 (d).

:h.
[+2]
T

1

&
E-Y
T

Fracture toughness (MPaxm'?)

42
n__
"\_‘_& /
4.0
38}
L L 1 i L i 1
0 10 20 30

SiC volume (vol%)

Figure 4. The fracture toughness values of multiphase
ceramics with different volume contents of SiC
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Figure 5. Propagation path of the Zr,Al4Cs/SiC composite ceramics:
(a) ZSO, (b) ZS2 and (c) ZS3.

In order to elucidate the mechanism in composition-dependent fracture toughness of samples with
different compositions of Zr-Al-C and SiC volume contents, the crack propagation features of all
sintered ceramic samples are observed through SEM surface morphology images shown in Figure5.
Compared to ZS0 samples, in the Zr,Al4Cs/SiC composite ceramic samples the crack path is zigzag
and prolonged due to the combination of trans-granular and inter-granular fracture, indicating that
these interactions absorb the energy of crack propagation during the fracture process and lead to more
shorter crack paths for toughening the composite ceramics[13], which is evident shown in Figure 5(b)-
5(c) and agrees well with the results from fracture morphologies shown in Figure 3(d). Furthermore,
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inspection of crack propagation reveals that the crack deflection and crack bridging are caused by the
layer-structured Zr-Al-C grains.

4. Conclusions

Zr,Al4Cs/SiC composites were synthesized by the in situ reactive spark plasma sintering at 1800 C for
3 min under 20MPa. The addition of SiC resulted in significant decrease in open porosity of the
ceramics. It is found that the as-sintered products are mainly composed of Zr,Al4Cs matrix and SiC
reinforcement, the SiC particles disperse uniformly throughout of the matrix Zr,Al,Cs. The addition of
SiC particles can evidently hinder the coarsening of Zr,Al,Cs grains, and the fracture exhibited a
combination mode of intergranular and transgranular propagation. The introduction of SiC increases
the Vickers hardness and Young’s modulus of Zr,Al,Cs/SiC composites gradually increase. The
fracture toughness of the composites decreases first then increases with the increase in the SiC and the

Z1,Al,Cs/30vol%SiC sample possesses the maximum value of 4.4 MPa-m'"2.
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