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Abstract. Zr2Al4C5/SiC composite ceramics were successfully fabricated from the powder 
mixture of Zr, Al, C and SiC by spark plasma sintering method. The composition-dependent 
densification, phase evolution, microstructure and mechanical properties of the composite 
ceramics were studied. With increasing the SiC content in the starting powder mixture, the 
densification behavior of sintered samples was promoted. It is found that the as-sintered 
products are mainly composed of Zr2Al4C5 matrix and SiC reinforcement, and the fine SiC 
particles tend to disperse on the matrix grain boundaries. Besides, the addition of SiC particles 
can evidently hinder the coarsening of Zr2Al4C5 grains. Both the Vickers hardness and Young’s 
modulus of composites ceramics gradually increase as increasing the SiC content. The fracture 
toughness of the composites decreases first then increases with the increase in the SiC and the 
Zr2Al4C5/30vol%SiC sample possesses the maximum value of 4.4MPam1/2. 

1.  Introduction 
Compared with the corresponding binary carbide ZrC, the Zr-Al-C compounds (including Zr2Al4C5, 
Zr3Al4C6 and Zr2Al3C5)show superior oxidation resistance, high fracture toughness, and excellent 
room and high-temperature stiffness, being promising high-temperature structure ceramics[1-4]. The 
Zr-Al-C compounds also exhibit comparable high-temperature mechanical properties, the Young’s 
modulus decreased slowly with increasing temperature and the Young’s modulus was 293 GPa at 
1580 oC, which is about 81% of that at room temperature. At the same time, the strength at 1400 oC 
was 371 MPa, which is about 10% higher than that at room temperature. These properties make it 
attractive candidate for high-temperature structural applications in aerospace. 

However, as a high-temperature structural material, the fracture toughness, hardness and oxidation 
resistance of Zr2Al4C5 ceramics at high temperature is still unsatisfactory, which restrict its wider 
application. Recently, a number of works have been published on improving the mechanical properties 
of Zr2Al4C5. Owing to the light weight, high hardness and strength, superior high temperature 
oxidation resistance[5-6], the incorporation of second phase SiC particles into Zr2Al4C5 significantly 
improve the hardness, fracture toughness, and oxidation resistance[7-8]. However, to the best of the 
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authors’ knowledge, few studies have been carried out on the composition (SiC volume contents)-
dependent mechanical properties of Zr2Al4C5/SiC composite ceramics in the open literature. 

In the present work, therefore, the Zr2Al4C5/SiC composites were prepared using Zr, Al, graphite, 
and SiC powders as initial materials by spark plasma sintering process. The effect of SiC content on 
the densification, phase evolution, microstructure and mechanical properties of the composites were 
investigated in detail. The related mechanism was also discussed. 

2.  Experimental procedures 
Commercially available powders of Zr (99.9%, 10 μm, Beijing mountain technical development center 
for non-ferrous metals, China), Al (99.99%, 8 μm, Shanghai chemical reagents of Chinese medicine 
group, China), graphite (99.9%, 1 μm, Shanghai capable graphite Co. Ltd., China), and SiC (99.5%, 
5μm, Weifang Kaihua Micro-powder Co. Ltd., China) were selected as raw materials for the synthesis 
of Zr2Al4C5/SiC composites.  

The molar ratios of starting powders were selected to 2Zr/6.2Al/4.8C, in order to compensate the 
loss of Al at higher temperatures, off-stoichiometry molar content of Al were used. Finally, the 
Zr2Al4C5/SiC composites with 0 vol%, 10 vol%, 20 vol% and 30 vol% SiC were obtained and 
designated as ZS0~ZS3, respectively. 

The mixture of initial powders with the designed composition was mixed in an agate mortar, and 
put into graphite crucibles of 15 mm in diameter and finally spark plasma sintered in vacuum (model-
1050, Sumitomo Coal Mining Co. Ltd., Tokyo), under a temperature of 1800 ◦C for 3 min with a 
uniaxial pressure of 20 MPa. The temperature was measured by means of an optical pyrometer 
focused on to the sintered sample through a small hole in the die. The detailed operation and sintering 
process of spark plasma sintering (SPS) was reported in the previous papers[9-10]. 

The open porosity of the sintered products was determined by Archimedes’ immersion method 
with water as the immersing medium. The microstructure of ceramic samples was studied by using X-
ray diffraction (XRD, X’Pert PRO-PANalytical) with Cu Kα radiation. The polished surface and 
fracture morphologies of sintered ceramic samples and the surface and cross-sectional morphologies 
of the samples after high-temperature oxidation were observed by using scanning electron microscope 
(SEM). The grain sizes of samples were determined from SEM images using the average of length and 
width from 50 randomly selected grains. The testing details of the Young’s modulus (E), the Vickers 
hardness and fracture toughness of the ceramic samples were reported in the previous papers[9-10]. 

 

 
Figure 1. the XRD patterns of the composites: (a) ZS0, 
(b) ZS1, (c) ZS2, (d) ZS3. 
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3.  Results and discussion 
Figure 1 shows the XRD patterns of the composites. As shown in Figure 1(a), the peaks of Zr2Al4C5 
was not detected in the SPS sintered sample, and the main peaks were related to the Zr2Al3C5 phase. 
However, with the increase of the content of SiC, only a traces amount of Zr2Al3C5 was detected, 
besides the main phase of Zr2Al4C5, which indicates SiC played a key role on the synthesis of 
Zr2Al4C5[11].  

The density and open porosity of samples sintered at 1800 oC for 3 min as a function of SiC content 
is shown in table 1. The density of Zr2Al4C5/SiC composite gradually decreases with the content of 
SiC increasing. The density increases due to a smaller density of 4.5 g/cm3 for Zr2Al4C5 than that of 
3.22 g/cm3 for SiC[2, 6]. It can be seen that the open porosity decreased with the increase of SiC 
volume content and all the composite ceramics have much lower open porosities only around 0.06-
0.21%, indicating that the desification of the composite ceramics are easier to achieve due to the 
existence of SiC which is densified.  

 
 

Table 1. Open porosity, aspect ratio of Zr2Al4C5 grains, Vickers hardness and Young’s modulus 
of samples with different SiC volume contents 

Samples Density 
(g/cm3)  

Open 
porosity 

(%) 

Diameter of 
elongated  

grains (μm)

Aspect ratio 
of Zr2Al4C5 

grains 

Vickers’ 
hardness 

(GPa) 

Young’s 
modulus (GPa)

0vol% 4.3121 0.21 2.85±0.25 4.10±0.94 10.6±0.3 320±20 
10vol% 4.2076 0.17 3.68±0.45 3.15±0.85 11.0±0.3 340±30 
20vol% 4.0392 0.11 3.28±0.35 4.05±1.05 12.7±0.4 355±25 
30vol% 4.0108 0.06 2.35±0.45 4.35±1.15 15.0±0.4 365±25 

 
 
Table 1 compares the diameter and aspect ratio of elongated Zr2Al4C5 grains for Zr2Al4C5/SiC 

samples. The aspect ratio of Zr-Al-C grains of pure Zr-Al-C ceramic is 4.10 ± 0.94. As the volume 
content of Zr-Al-C decreases from 90 vol.% to 70 vol.%, the aspect ratio of Zr-Al-C first decreases 
from 3.15 ± 0.85 for ZS1 and then apparently increases to 4.35±1.15 for ZS3. With the increase of SiC 
content, the diameter of elongated Zr2Al4C5 grains decreased as a consequence of the pinning effect of 
SiC on the grain-boundary. As discussed above, the grain size of Zr2Al4C5 matrix decreases with the 
increase in the SiC content, which suggests that the addition of SiC particles can evidently hinder the 
coarsening of Zr-Al-C grains, and the restriction in grain growth could further improve the 
densification and the material’s stability at elevated temperature during sintering [12]. 

Vickers hardness and Young’s modulus of Zr-Al-C-based composite as function of SiC content are 
listed in Table 1. It can be seen that the Vickers hardness and Young’s modulus increase gradually 
with the increase of SiC volume content. Compared to ZrB2 and SiC, Zr2Al4C5 has a low hardness of 
about 11 GPa [3], the incorporation of SiC could effectively improve the Vickers hardness of the 
composites. The intrinsic Young’s modulus of SiC was higher than Zr-Al-C. In addition, the ceramics 
with the lowest porosity and lower grain size of the matrix. The ZS3 sample exhibits relatively higher 
values of Vickers’ hardness and Young’s modulus.  

Figure 2 shows the polished surface morphologies from SEM backscattered electron images of 
samples with different compositions of Zr-Al-C and SiC volume contents. It is clearly observed that 
there are two distinct phases which have different grain shape and sizes. Combining with the analysis 
of XRD and EDS (not shown), the columnar or plate-like gray grains are identified as Zr-Al-C grains 
and the dark particles are SiC grains. As shown in the figures, the SiC particles disperse 
homogenously among the Zr-Al-C grains, which was helpful to reinforce the mechanical properties. 
The matrix grain size of the products decreases significantly as the SiC content increase, and no any 
pore could be observed in the SiC containing composites.  
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inspection of crack propagation reveals that the crack deflection and crack bridging are caused by the 
layer-structured Zr-Al-C grains.  

4.  Conclusions 
Zr2Al4C5/SiC composites were synthesized by the in situ reactive spark plasma sintering at 1800 ◦C for 
3 min under 20MPa. The addition of SiC resulted in significant decrease in open porosity of the 
ceramics. It is found that the as-sintered products are mainly composed of Zr2Al4C5 matrix and SiC 
reinforcement, the SiC particles disperse uniformly throughout of the matrix Zr2Al4C5. The addition of 
SiC particles can evidently hinder the coarsening of Zr2Al4C5 grains, and the fracture exhibited a 
combination mode of intergranular and transgranular propagation. The introduction of SiC increases 
the Vickers hardness and Young’s modulus of Zr2Al4C5/SiC composites gradually increase. The 
fracture toughness of the composites decreases first then increases with the increase in the SiC and the 
Zr2Al4C5/30vol%SiC sample possesses the maximum value of 4.4 MPam1/2. 
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