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Abstract. Electrohydrodynamic jet printing is a rapid manufacturing method in additive 

manufacturing fields, which is employed to generate micro-nano patterns, functional structures, 

sensors and electronics in recent years. It is a rapid manufacturing, low-cost, mask-free route to 

manufacture one dimensional to three dimensional structures by nanoink. In this paper, silver 

dots, lines and designed patterns are printed by electrohydrodynamic jet printing. The results 

are stable and uniform, which can be adjusted by printing parameters. With high voltage, large 

pulse width or small stand-off distance, the size of dots increase. By increasing frequency or 

decreasing shifting speed, the distance between dots becomes short, then the structures are 

getting into lines from dots. Multi-layer silver lines are characterized by X-ray imaging and 

exhibit good absorption of X-ray, leading to the significant radiation attenuation effectiveness. 

The printed silver structures are good candidates for radiation shielding in electronics and 

circuit boards.  

1. Introduction 

Electrohydrodynamic jet (e-jet) printing is a rapid manufacturing method in additive manufacturing 

fields, which can generate many kinds of micro-nano structures from metal to polymer [1-5]. There are 

many advantages of e-jet printing, such as rapid manufacturing, low-cost, mask-free and pattern 

variation, thus, many functional structures can be fabricated on glass, flexible films and silicon [6-9]. 

The nanoink for printing are prepared by nanomaterials and typical solvent, resulting in the good 

property for printing with silver nanoparticles [9], quantum dots [10], silver fibers [11], even carbon 

nanotubes [12] and graphene [13]. Compared with the traditional manufacturing methods, e-jet 

printing provides a green, low environmental approach to generate micro-structures, which has great 

potentials in electronic sensors, bio-sensors and circuit boards.  

The property of printed results is greatly influenced by printing parameters, such as voltage, 

shifting speed, frequency, stand-off distance, needle size, etc. Han et al [14] reported high aspect-ratio 

3D structures of sub-10 µm resolution by e-jet printing, which showed high resolution of this method. 

AC-pulsed voltage was used to manufacture the transparent electrode [15], electrical features and 

connectors [16,17]. Qin et al [18] fabricated a functional touch sensor with high sensitivity via e-jet 

printing using silver nanoink. Many composite materials were employed to manufacture multi-layer 

structures, including WO3-Ag [19,20], Ta [21], WO3 [22], which were good candidates of electron 

devices. In addition to traditional substrate, flexible films were employed for printing, such as 

polydimethylsiloxane (PDMS) and Polyethylene terephthalate (PET) [23,24]. In the previous reports, 

the researchers focused on improving printing quality through different approaches by controlling the 
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relevant printing parameters, but the printing mechanism and quality control were still challenges for 

manufacturing functional structures. 

One of the potential applications for printed metal structures is radiation shielding. The electronic 

components and circuit board used in a high-radiation environment always cause operational errors of 

the system because of heavy intensity radiation. X-ray absorbed metals are good selections for 

radiation-hardening techniques, which requires special manufacturing processes and tailored electronic 

design. Furthermore, it was difficult to realize particular part radiation protection, because the 

micro/nano fabrication of given shape metal is complex. Fortunately, with the development of 

nanotechnology, many metal nanoparticles were synthesized and commercialized. These nanoparticles 

can be made into nanoink for printing with a particular additive solvent to generate different patterns 

on the substrate. 

In this paper, silver micro-structures in dots, lines and other designed patterns were fabricated by 

e-jet printing. The influence of voltage, pulse width, frequency, shifting speed and stand-off distance 

on the size of printed results were discussed. With multiple printing processes, multi-layer silver lines 

were generated, which showed good absorption of X-ray by characterizing them with X-ray 

topography imaging. The printed silver structures are good candidates for radiation shielding in 

electronics and circuit board.  

2. Methods and materials 

2.1. E-jet printing system 

The schematic e-jet printing system is shown in figure 1(a). A nozzle with a micro-needle in the tip is 

employed to contain the ink. There is a shifting platform (Aerotech A3200), which moves freely in xyz 

directions to control the designed patterns. A high voltage generated by the wave generator and 

amplifier is applied between the metal needle and the plate electrode. The substrate is on the electrode, 

which moves by program control in xy plan. The distance between the needle tip and substrate is 

adjusted by moving nozzle positions along z axis.  

 

 

Figure 1. (a) Schematic of e-jet printing. (b) Optical image of the needle of the printing 

process. (c) Scanning electron microscope (SEM) image of printed silver dots. 

 

The whole system is set on a flat stable platform to avoid vibration. In order to get the printing 

results in real-time, a charge-coupled device (CCD) camera coupled with a lens system is added in the 

system [25]. Figure 1(b) shows the needle shape and size, as well as the printed line. Different size 

patterns are generated by controlling the stand-off distance and needle size. In the printing process, the 

nanoink is added to the nozzle, then it is jetted by the high voltage, then deposited on the substrate, 

resulting in functional patterns. The nanoink used in this research is silver nanoink from Sigma 

Aldrich, in which the ~50 nm silver nanoparticles are solved in the solvent Triethylene glycol 

monomethyl ether (TGME) at 50 wt%. 

2.2. Characterization 

The printed patterns were characterized by optical microscope (Hirox RH-2000). The microscope 
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obtained both the surface morphology and film thickness. The largest magnification was 5000X. A 

scanning electron microscope (SEM, FEI Quanta 250) was employed to estimate the details of printed 

patterns. With the characterization results, the printing control and patterns optimization were realized. 

An X-ray imaging system (figure 7(a)) was employed to characterize the radiation absorption property. 

It includes X-ray source, rotating platform, focus system, detector, and image process program. The 

X-ray topology image was recorded by the detector, which shows different gray scale to estimate the 

absorption ability of X-ray [26]. 

3. Results and discussions 

The control of parameters in the e-jet printing process is significant to get designed patterns. By 

altering these parameters, the target results change in size and shape. Voltage is one of the important 

parameters in e-jet printing. The nano ink is jetted by electrical force in the electrical field generated 

by high voltage. Different from gas-driven jet printing, e-jet printing is better to control the droplet by 

voltage. Direct current (DC) [27] and alternating current (AC) [28] were both employed to drive the 

printing process in the previous reports. AC voltage is controllable by frequency, positive and negative 

value, pulse width, resulting in charges removing of nanoink, which benefits on printing results. An 

amplified AC voltage is applied with variable voltage amplitude, frequency and pulse width. Figure 

1(c) shows the SEM of the printed dot, which is composed of dense silver nanoparticles, indicating 

that the stability of nanoparticles is not destroyed in the e-jet printing process. 

Figure 2(a) shows the optical microscope image of printed silver dots with different voltages. The 

size of dots becomes large as the increase of voltage amplitude. By the curve of dots areas as a 

function of printing voltage shown in figure 2(b), the change rule meets the function of 

S=-0.0073u2+17.976u-8598.2. In the equation, S is the mean area of the dots, u is the voltage. It 

indicates that the dot diameter linear changes as the voltage altering. The area of the dots represents 

the volume of the droplet of e-jet printing. With large voltage, the electrical field force becomes large, 

resulting in large quantity size volume. There is another advantage of high voltage used in ink-jet 

printing, good stability of the printing process. The program can control the voltage and set a given 

value, which leads to regular and high-quality printing structures. We can see from figure 2(a) that, 

while the voltage reaches 900 V, there is a tip of each dot. That’s because the ink split under high 

voltages, resulting in small satellite droplets and tip-dots on the substrate. 

 

 

Figure 2. (a) Optical microscope image of printed dots with 

different voltages. (b) The dots areas as a function of voltages. 

 

By changing the stand-off distance, the size of the dots is changed gradually, shown in figure 3. 

The stand-off distance here is the distance between the needle tip and the substrate, which is usually 

10-100 μm. The mean area of dots changes from 2250 μm2 to 420 μm2, as the stand-off distance 

changes from 10 μm to 45 μm, respectively. When the stand-off distance becomes short, the electrical 

force applied to the droplet decreases. Thus, small volume droplet is generated, and deposited on the 

substrate, resulting in small dots. The needle and printing results are both in micrometer level, so that 
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it is important to control the stand-off distance accurately. With the application of e-jet printing in 

flexible electronics, the substrate surface is no longer flat, such that the program should adjust the 

constant stand-off distance. The selection of stand-off distance is also affected by the size of the 

needle. In our experiment, a needle with ~28 μm is used to generate dots and lines. 

 

 

Figure 3. (a) Optical microscope image of printed dots with 

different stand-off distance. (b) The dots areas as a function of 

printing stand-off distance. 

 

Pulse width is the time period in the open status of the voltage switch, which allows the supply of 

high voltage for printing. It affects droplet volume, resulting in size control of printed structures. The 

printed lines and dots at different pulse width are shown in figure 4. By controlling printing speed, we 

obtained lines (0.2 mm/s) and dots (4 mm/s). The results show an increase of line width and dot 

diameter with the increase of pulse width. With very large pulse width, there are also tip-dots patterns 

because of the droplet split, shown in figure 4(b).  

 

 

Figure 4. Optical microscope image of printed silver (a) lines 

and (b) dots with different pulse width. 

 

 

Figure 5. Optical microscope image of printed silver (a) lines and (b) dots with different frequency, (c) 

lines and (d) dots with different printing speeds. 

 

Lines and dots are generated by changing the printing speed or frequency. It affects the distance of 

two nearby dots by the time period of droplet deposited onto the substrate. Once a small frequency or 

large speed are applied in printing, separate dots are printed, shown in figures 5(b) and 5(d). With the 
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increase of frequency and decrease of speed, the dots become close to each other, forming a dense dots 

arrays. Due to the constant voltage, pulse width and stand-off distance, the size of the dots don’t 

change. Lines are fabricated while two or more adjacent dots overlap with each other, shown in figures 

5(a) and 5(c). At this condition, the width of lines is changed with frequency and speed. The droplet is 

large and aggregates together during the printing process, which results in different widths of lines at a 

low solidified rate of nanoink. The shifting speed is changed by moving the platform in our 

experiment, where the electrical field is also changed. Many defects will appear at high moving speed 

during the printing process, especially in manufacturing some complex functional patterns.  

With computer design, many functional patterns are realized by e-jet printing. Figure 6(a) is a 

micro-glass composed of silver lines and circles. The linewidth is about 30 to 35 μm. It is noticeable 

the linewidth of the circle is larger than the line, which is caused by the circle route of printing at a 

small speed. With the spread of nanoink deposited on the substrate, the outline of the circle becomes 

wider. The line patterns connected together as circuit candidates in electronics are shown in figure 

6(b). Both circles and lines are fabricated by e-jet printing with silver nanoink, which indicates the 

good printing performance in manufacturing most functional patterns on the substrate. The letters of 

‘QUST’ grouped by micro silver dots are generated in figure 6(c). The amplified optical image is 

shown in figure 6(d). The diameter of the dot is 36 μm, almost the same as the diameter of the needle. 

The dot is very uniform and regular, which is the high-quality results of optimizing printing 

parameters. 

 

 

Figure 6. Optical microscope image of printed designed silver 

patterns. (a) micro-glass, (b) circuit, and (c) letters with dots. (d) 

is the magnified image of one dot in (c). 

 

Multi-layer silver lines are printed for X-ray absorption analysis by multiple e-jet printing. The 

lines were deposited layer by layer at a small shifting speed. The previous layer became solid partly 

while the new layer deposited. Thus, high density and thickness silver line are generated to form the 

X-ray image in the system of figure 7(a). A 30 kV, 1000 μA X-ray source was employed for scanning 

the samples. The exposure time was 6500 ms to get a high-quality image. The detector with resolution 

3072×3888 was used to get the X-ray transmitted data. Each pixel has position information with grey 

value to indicate the absorption ability of X-ray. Figure 7(b) shows the amplified optical image of 

silver lines 1, 10, and 50 layers. The mean width is 18.64 μm, 19.56 μm and 28.43 μm, respectively. 

The width difference is caused by the spread of printed nanoink. The more number of layers are, the 

wider of the lines generate. The different layers represent single layer line, medium layer line and thick 

layer line. Furthermore, other different layers between 1 and 200 layers can also be printed according 

to the requirements.    
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Figure 7. (a) Schematic of the X-ray imaging system. (b) 

Optical microscope and (c) X-ray image of multi-layer silver 

lines. 

 

The X-ray image is shown in figure 7(c). The lines are clear with a different gray value which is 

obtained with image processing in Matlab. The gray value ratio G=I/I0, where I and I0 are gray value 

of the substrate and printed silver lines, separately. The dark color in the image refers to the small gray 

value. Thus, a small gray value ratio means high X-ray absorption ability. With the printing layer 

increase, the color of the lines in the X-ray image becomes dark. It is due to the larger absorption rate 

of X-ray of 50 layers than 10 layers and a single layer. The X-ray shielding efficiency is determined by 

the density and thickness of the structure. In e-jet printing, larger number layers result in higher 

density and more thickness. They have much more atoms at the direction X-ray passed through, 

leading to better absorption ability. However, it is still a challenge to get sufficient thick layer for 

radiation shielding, because of the flow of ink during the printing process. In the future, we will focus 

on building several grating masks and print silver nanoink into them to enhance the X-ray shielding 

ability.  

4. Conclusion 

To summarize, we have printed functional silver micro-structures of different typical dots and lines 

using an e-jet printing. The influence of printing parameters on results was discussed. With high 

voltage, large pulse width or small stand-off distance, the size of dots increase. By increasing 

frequency or decreasing shifting speed, the distance between dots becomes short, then the structures 

are getting into lines from dots. The printed silver structures show good absorption of X-ray by an 

imaging system measuring, resulting in application potentials in electronics radiation shielding. The 

research provides a significant method of fabricating functional micro-structures of e-jet printing and 

could pave a way for the applications in electronic radiation shielding.  
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