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Abstract. In this paper authors consider three-dimensional vibrations of a wind energy farms 

(WEF) of tower type VTR 50 Arctic. Low-frequency vibration of a WEF composed of a tower 

and rotor is considered in the out of balance condition. The method of analysis is based on the 

theory of mechanical oscillations and the theory of elastic shafts. We consider the tower as a 

shaft and the rotor as a rigid body. Using the Lagrange’s equations for elastic structures in 

combination with computer simulation provides for the novelty and efficiency of the suggested 

method. The unique nonlinear equation is deduced and solved using the Wolfram Mathematica. 

Keywords: alternative energy production, wind energy farms, Lagrange equations, general 

vibration theory 

Review of literature 

The climate change due to intensive use of fossil fuels, such as oil, coal, gas, etc., is one of the 

fundamental problems that the humanity is facing. World countries are negotiating quotas of greenhouse 

gas emissions reduction, which is impossible without alternative energy sources. Renewable energy 

sources are one of the best solutions. They have been extensively designed and installed in already in 

the course of several decades, due to the prospective depletion of fossil fuel and the greenhouse gas 

emissions issues. Renewable energy sources are much safer environmentally and economically, and in 

the future can replace the traditional ones. The energy of wind is one of the most promising directions 

in the alternative energy production [1]. 

Manufacturing of wind energy farms (hereinafter, WEFs), transforming the energy of a wind flow 

into the kinetic energy of rotor spinning and, further on, into electric current has been already put in 

practice in many countries [2]. It is important that WEFs do not exhaust natural resources in the process 

of their exploitation and do not add up to climate change. Operation of a wind generator of 1 MWt 

capacity within 20 years, would provide for saving 92 barrels of oil thousands cubic meters of gas. 

However, a major issue of the low vibration and noise in the area nearby the wind farms makes their 

dissemination problematic. 

This brings us to the actuality of this article dedicated to mathematical modeling of WEF vibration 

for the assessment of the level of it. The purpose of this paper was the development of a method for such 

modeling which would make sense yet at the design stage of a WEF. 

Theoretical data for solving the problem set  

The object of research is a WEF of tower type VTR 50 Arctic which has a horizontal axis of rotation of 

the wind wheel. The low-frequency vibration of a WEF with tower and rotor is under analysis.  As long 
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as the diameter of the WEF tower is much smaller than its height, while the displacements are relatively 

small, we can consider the tower as an elastic console beam [3-5]. The authors believe that in that case 

to consider bending oscillations in two planes is pretty well justified [6-8]. 

The method is based on the theory of elastic beams [9, 10] and the general vibration theory [11, 12]. 

The rotor is considered as a solid body. The method is based on the Lagrange equations in combination 

with computer mathematics which has presently reached a very high level and provides for achieving 

results of high accuracy in solving differential equations [13].  The problem is solved with the use of the 

system of the Wolfram Mathematica. 

We consider the WEF as a model with rotating rotor in two planes (Fig.1, Fig.2). 

 
Figure 1 A tower with rotating rotor in the XZ plane 

 

  
Figure 2 A tower with rotating rotor in the YZ plane 

 

Here we have a system with non-stationary connection. For the systems of the kind the Lagrange 

equations are the best option. Point C in the picture is the mass center of the rotor. It is displaced from 

the moving axis of rotation at a small distance    in XZ plane, the excentricity. 

Solving of the WEF linear problem 

The method is based on the Lagrange equations: 
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Here ( , , )i iK q q t  is the kinetic energy of the system of the system as a function of generalized 

coordinates iq , generalized  velocities iq  and (in some cases) directly present time; ( , )iU q t is the 

potential energy; iQ  are the generalized forces. The latter are derived from the expression of virtual 

work. 
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Here we used the matrix form of presentation with columns of generalized coordinates and forces. 

The 𝛿 symbol in (2) and further on indicates variation, i.e., infinitesimal increment of the value which 

we specify on our own. The Lagrange equations (1), which are an absolute tool in analytical mechanics, 

could not be understood outside the frames of variational analysis [9,10,14]. 

The kinetic energy of the tower looks like the following expression:  
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The potential energy of the tower is: 
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We consider the vibration in two planes, therefore the deflection includes two components 

( , ),  ( , )x yu z t u z t . Generalized coordinates for the vibrating beam (the WEF tower) could be introduced 

through the approximation of the deflections: 
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Here 1 2φ ,φ  are coordinate functions. We shall specify them but we must bear in mind the accurate 

boundary conditions in the rigid support of the beam: 1,2 1,2φ (0) φ '(0) 0  . We suppose that 

2
1 2 z      . 

Then the kinetic energy and the potential energy of the tower are: 
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  (6) 

Here M is the matrix of inertia and C is the matrix of stiffness of the tower. 

Let’s assume that the body of the rotor impacts only the kinetic energy of the rotor. First of all, the 

angles of the small rotation of the rotor: 
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According to the König's theorem the kinetic energy of the rotor [14]: 

 

 2 2 22 ψ ψ 2 ψ ψr c x x y y xy x yK mv J J J      (8) 

(Where ,  ,x y xyJ J J  are the inertia moments in relation to the axes going through the mass center, m

is the mass of the rotor). 

We should write the speed of the mass center: 
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The angles of the small rotation: 
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For the kinetic energy under the selected approximation, we will have: 
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  (11) 

The kinetic energy of the system is the following: 
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The potential energy of the system is summed up from the energy of deformation of the tower П𝑡 and 

the energy of the gravitation field: 

  2 2
1 2 1

1
εsin ψ εsin(2 )

2
t yU U mg C q q mg Lq t        (13) 

The expressions for the kinetic (12) and potential energies (13) we can put into the Lagrange equations. 

After deriving the relevant derivatives, we come to ODE (14): 
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Under the following conditions, the ODE (14) could be solved with the means of computer mathematics: 
3 2 3 2 2I 8.86 10 , I 28.1 10 , I 88.6 , 50 ,  580 ,x y xykg m kg m kg m mm m kg          

11,25 s  . The material of the tower is steel which has the density 
37800kg m  and the Young's 

modulus 200 GPa . The tower concludes two parts: cylindrical and conical. The height of the tower 

24.3 ,  L m the cylindrical part’s depth 1,8h m , the section is a ring with the outside radius 

( ) 2,2R x m  and the thickness 0,012 m . The conical part’s depth 22,5 mh  , the section is a ring 

with the outside radius  ( ) 1,296 1,896R x l x m     and the thickness 0,01m . 

The calculation is quite exemplify, because resisting forces is not taken into account. We can see the 

calculation result on Fig. 3:  the deflection of the tower top ( , )u L t  under the above indicated 

parameters. As it was shown, the vibration amplitude is not big. With the increase of the eccentricity in 

10 times, we will receive minor increase of the amplitude, which proved that the non-linearity is not 

manifesting. 

Vibrations of the tower top with rotating rotor 

Conclusion 

In this paper, authors presented an actual method for calculations of vibrations of a WEF tower with 

moving rotors and brought a justification of it. The method is based on the Lagrange equations. An 

accurate calculation by all introduced formulas was made with the use of computer mathematics. 

Diagram of tower vibrations with rotating rotor was presented. The diagram showed that the level of 

vibrations of the tower top was quite low and did not constitute any danger, though the eccentricity of 

the rotating rotor was significant.  

We conclude that value of eccentricity has not considerable influence on vibration level; therefore, 

authors intend to find out factors affect vibrations significantly. 
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