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Abstract. The article presents the derivation of the resolving equation for calculating the flat 
form of bending stability of the beams, taking into account creep. When deriving the basic 
equation, the application of the load with eccentricity, as well as the initial curvature of the beam 
is taken into account. The solution of the test problem for a wooden cantilever beam is presented. 
The value of the long-term critical load was introduced and it was shown that the load acting on 
the beam should not exceed it. A new criterion for determining the critical time is proposed. 

1.  Introduction 
When designing rectangular beams in order to reduce material consumption, engineers strive to increase 
the ratio of cross-section height to width, which implies the need to check the structure for stability of a 
flat bending. A large number of works, including [1–3], are devoted to the calculation of prismatic beams 
on the stability of a flat form of deformation. However, in all these publications, the solution is 
performed in an elastic formulation. In this paper, we will consider the solution of this problem, taking 
into account creep. 

When deriving the basic equation, we will use the criterion of initial imperfections as a criterion of 
stability. The initial irregularities are specified in the form of the initial deflection v0(x), the initial twist 
angle θ0(x) and the eccentricity e. The critical time when using the specified criterion is determined 
conditionally by setting the maximum value of displacements or the maximum speed of their growth. 

2.  Derivation of resolving equations 
The beam element after buckling is shown in figure 1. In the lateral buckling of a beam, a torque Mx 
arises in it. For the x axis of an ideal undeformed beam, we write the sum of moments: 

    0 0 0
0 0.

2x x x

v v v v d v v
M dM qdx e a M

     
         

 
  (1) 

After discarding values of a higher order of smallness, we get: 

  0 0 .xdM
q v v e a

dx
           (2) 
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Figure 1. Beam element after deformation 

Torque acting relative to the axis x', can be calculated by the formula: 

  0
0 .x x y

dvdv
M M Q v v M

dx dx


      
 

    (3) 

For a beam experiencing bending in two planes, the total linear deformations based on the flat section 
hypothesis can be determined by the formula: 

2 2

2 2
.x

d v d w
y z

dx dx
         (4) 

On the other hand, the total deformations εx represent the sum of the elastic deformations and creep 
deformations: 

* .x
x xE


                    (5) 

Substituting (4) into (5) and expressing stresses through deformations, we get: 

2 2
*

2 2
.x x

d v d w
E y z

dx dx

 
      

 
     (6) 

Bending moments are calculated as follows: 

; .y x z x

A A

M zdA M ydA           (7) 

Substituting (6) into (7), we get: 

2 2
* *

2 2
; ,y y y z z z

d w d v
M EI M M EI M

dx dx
             (8) 
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where * * * *, y x z x

A A

M E zdA M E ydA      . 

The relation between the twisting angle and the torque with regard to creep has the form [4]: 

*,t tx t

d
M M GI M

dx



        (9) 

where * * *( ) , xy xz

A

tM G z y dA    *
xy and *

xz  – shear creep strains, tI – moment of inertia during 

torsion. 

Equating (9) to (3), we get: 

 * 0
0t t x y

dvd dv
GI M M Q v v M

dx dx dx

        
 

.    (10)  

Next we differentiate equality (10) with respect to x: 

       2*2
0 0 0

02 2yt
yxt

dMd v v d v v d v vdM dMd dQ
GI v v Q M

dx dx dx dx dx dx dx dx

  
       .    (11) 

Further we substitute (2) in (11) and take into account that 
dQ

q
dx

   and ydM
Q

dx
 . After 

simplifications, equality (11) takes the form 

  
* 22 2

0
02 2 2

.t
y yt

dM d vd d v
GI q e a M M

dx dx dx dx


           (12) 

We express from (8) the value 
2

2
:

d v

dx
  

*2

2
.z z

z

M Md v

dx EI
        (13) 

Considering that  0z yM M     , we rewrite equality (13) in the form: 

  *2
0

2
.y z

z z

M Md v

dx EI EI

 
       (14) 

Substituting (14) into (12), we obtain the main resolving equation: 

 
2 * 2* 22

00
02 2

.y yt z y
yt

z z z

M M M MdM d vd
GI qa q e a M

dx EI dx dx EI EI

  
           
 

    (15) 
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3.  Methods 
For the calculation, the grid is introduced in time t and the x coordinate. The cross section is divided into 
segments Δy and Δz. At the first stage, the solution of equation (15) is performed by the method of finite 

differences at t = 0, * 0x  ,  * * * * *0, 0, 0, 0txz xy y zM M M       .  

After determination of the twist angle θ(x) from equation (15), we calculate the relative angle of twist 
d

dx


    for each cross section with step x . Then, for each section, the tangential stresses are 

calculated by solving the differential equation obtained in [4]: 

 
**

2 , 2 0,xyxzy z G G
y z

 
        
     (16) 

where Φ is the stress function, given by the formulas: 

; .xy xzz y

 
    

 
     (17) 

The boundary conditions on the contour of the cross section have the form: Φ = 0. 

Curvature changes are also determined. The value 
2

2

d v

dx
 is determined by the formula (14), and the 

values 
2

2

d w

dx
 can be calculated by the formula: 

*2

2
.y y

y

M Md w

dx EI


      (18) 

Knowing the changes in curvatures, it is possible to determine the normal stresses by the formula 
(6). Further, the magnitudes of the normal and tangential stresses are determined by the rate of growth 

of creep deformations. Then, using the Euler method, the strains * * *, , xz xy x     are found at time t + Δt, as 

well as the values * * *, , yt zM M M  . Then the process is repeated for the next step. 

4.  Results and discussions 
In order to control the reliability of the resulting equation and the developed technique, a test problem 
was solved for a cantilever wooden beam, to which the force F is applied with the eccentricity e (figure 
2). 

The boundary conditions for this problem are written as: 

*

at 0 : 0;

at : .t к t

d
x l M Pe GI M

dx

x  


   


    (19) 

As the creep law, we used Maxwell-Thomson equation, which has the form: 
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*
*

1
1 ;

1
1 ,

x
x

x

E
E

t nE E

G
G

t nG G









           
            



         (20) 

where E is the instantaneous modulus of elasticity of the material (E = 1.48 ∙ 104 MPa), E is the long 

modulus of deformation ( E  = (0.6 ÷ 0.75) E  = 104 MPa), n is the relaxation time (n = 10 ÷ 25 days, 

is usually taken 18 days), G and G are respectively the instantaneous and long-term shear modulus. 

In the calculations we assumed G = 500 MPa, and G = 0.675G = 338 MPa. 

  

Figure 2. Design scheme 

For an ideal elastic beam, the loss of stability occurs at the following critical force [5]: 

2

4.01
.r t zcF GI EI

l
      (21) 

The value of long-term critical load was introduced by the formula: 

2

4.01
.ztF G I E I

l        (22) 

The behaviour of the beam was investigated at F F , F F  and F F . The initial data was 

taken as follows: b = 10 mm, h = 100 mm, l = 1 m, e = 0.1 mm. Long-term critical load for the beam is 
117.8 NF  .  Figure 3 shows the graphs of the twist angle maximum value variation in time for three 

values of the load (F = 100 N < F , F = 117.8 N = F  and F = 125 N > F ). 
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Figure 3. Graphs of the maximum twist angle growth for various values of the force F 

From figure 3, it can be seen that, if a load is less than a long-term critical, the growth rate of 
displacements decays with time. When F F , the displacements grow at a constant speed, and when 

F F , the displacements growth rate increases with time. A similar character of displacement growth 

curves was obtained for compressed rods in the paper [6]. The results obtained by us confirm the validity 
of the technique. 

The calculation was also carried out at F = 125 N for the different values of eccentricity e. The 
corresponding θ(t) curves are shown in figure 4. From the presented graphs it can be seen that, if the 
value of displacements or the rate of their growth is taken as a criterion for the loss of stability, the initial 
imperfections have a significant effect on the value of the critical time. Thus, the loads acting on the 
beam should not exceed the long-term critical force. 

 

Figure 4. The growth of the twist angle maximum value for the different values of eccentricity e 
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A rather interesting picture is observed on the graphs of the normal stresses maximum values change 
in time. Up to a certain point in time, despite the increase in the twisting angle, the normal stresses 
decrease, but then they begin to increase. From figure 5 it can be seen that the higher the value of 
eccentricity e is, the earlier the moment comes from which normal stresses begin to rise. The time 
corresponding to the extremum point in the σmax (t) graphs can be taken as critical. In case of using such 
a criterion for buckling critical time was 150 days for e = 0.1 mm, 112 days for e = 0.2 mm, 90 days for 
e = 0.3 mm and 76 days for e = 0.4 mm. 

 

Figure 5. The change in time of the normal stress maximum values  

The maximum shear stresses in the beam, as well as the twisting angle, only increase in time. 

5.  Conclusions 
A universal resolving equation was obtained for calculating the flat bending stability of rectangular 
section beams, suitable for arbitrary creep law. Initial imperfections in the form of initial deflection, 
initial angle of twist and load eccentricity were taken into account. The phenomenon of lateral buckling 
of beams during creep was studied using the example of a cantilever wooden beam. The value of long-
term critical load F  was introduced and an analogy with the problems of compressed rods stability in 

creep was established.  

It was also found that when F F , the maximum value of the normal stress first decreases in time, 

and then from a certain moment the stress σx begins to increase. The time corresponding to the minimum 
stress point on the σx(t) graphs can be taken as critical. 
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