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Abstract. It is essential to thoroughly investigate influences of orifice layouts on properties of 

aerostatic journal bearings employed in ultra-high speed spindles. In this paper, four orifice 

layouts of aerostatic journal bearings which have a large length-diameter ratio are designed and 

investigated, particularly in light of the nonlinear compressible Reynolds equation and the 

associated computational analysis and algorithms using the FEM-based Galerkin weighted 

residual method. A series of pressure distributions as well as the load capacity, attitude angle, 

volume flow rate and air film stiffness of the aerostatic journal bearings for the cases of four 

orifice layouts are analysed with respect to different rotational speeds and eccentricity ratios. It 

can be concluded that increasing orifice sets is not beneficial to enhance the performance of the 

aerostatic journal bearing. The aerostatic journal bearing divided into two identical independent 

aerostatic journal bearings has relative optimal performance at rotational speeds from 0 r/min 

to 160,000 r/min, such as the highest load capacity, the lowest attitude angle and modest air 

film stiffness, however, with consumption of the largest quantities of pressurized gas. The 

designers can use the analysis results to optimize the orifice layout for improving the 

performance of the aerostatic journal bearing. 

1.  Introduction 

Air bearings have outstanding features of almost zero friction, clean and high supporting accuracy 

with respect to ball bearings [1,2]. Hence, air bearings become the essential components of high speed 

motorized spindles which are commonly used in precision micro-machining fields with the top speed 

of greater than 100,000 r/min [3,4]. Aerostatic bearings, one type of air bearings, have many types of 

restrictors, such as porous restrictor, slot restrictor, orifice restrictor and so on. However, orifice 

restrictors play a dominant role in the academic and industrial communities. It is of great significance 

to study the varied properties of aerostatic bearings influenced by orifice layouts for developing higher 

accuracy bearings which are employed to the ultra-precision aerostatic spindles. 

Large quantity of research papers had been reported to investigate properties of the aerostatic 

bearing by numerically solving the Reynolds equation with finite difference method (FDM) or finite 

element method (FEM). Gas film pressure and load capacity of the aerostatic bearing with a length-
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diameter ratio of 1 were analysed based on the modified Reynolds equation [5]. Rotation effects of 

hybrid air journal bearings were studied by numerically solving the Reynolds equation with FDM [6]. 

Effects of the geometrical and running parameters on the characteristics of the micro air journal 

bearing were obtained by applying the Newton iteration and the FDM to analyse the Reynolds 

equation [7]. Aerodynamic and aerostatic effects of aerostatic bearings were investigated through 

numerically calculating the Reynolds equation associated with the Newton’s method [8]. The 

Reynolds equation was numerically analysed by FDM and successive over-relaxation (SOR) method 

to calculate the load capacity and stiffness of air bearings [9]. Air film pressures of aerostatic bearings 

were analysed with Euler explicit approach and central FDM [10,11]. Besides, air film pressures and 

stiffnesses of aerostatic journal and thrust bearings were studied based on the FDM and the successive 

relaxation method [12]. Furthermore, the Reynolds equation was numerically calculated by FEM to 

study the radial load capacity and air film stiffness of the air spherical bearing [13], and the effects of 

pressure-equalizing grooves of aerostatic journal bearings were also investigated [14]. The Reynolds 

equation with the velocity item was further discretized by FEM to study the performance 

characteristics of the aerostatic journal bearing under conditions of ultra-high speeds and eccentricities 

[15]. Based on the aforementioned analyses, the performance investigations of the aerostatic bearings 

were conducted in many papers, however, most of the length-diameter ratios of the aforementioned 

aerostatic journal bearings were less than 2, and few research literatures were published to discuss the 

influences of orifice layouts on the properties of aerostatic journal bearings which have a large length-

diameter ratio. Therefore, in this study, influences of various orifice layouts on the properties of the 

aerostatic journal bearings with a large length-diameter ratio are investigated by numerically solving 

the nonlinear compressible Reynolds equation based on the FEM. 

2.  Aerostatic journal bearings with various orifice layouts 

Figure 1 shows the designed four orifice layouts of the aerostatic journal bearing. Different orifice sets 

are designed in each bearing and twelve equispaced orifices are distributed in each orifice set. The 

bearing length, L, is 60 mm, the bearing bore diameter, D, is 20 mm, the orifice diameter, d, is 0.2 

mm, the gas film thickness without eccentricity, hn, is 20 μm, the supply gas pressure, ps, is 0.7 MPa. 

Section a-a is the axial middle plane of the aerostatic journal bearing. 

Case 1: two orifice sets are symmetrical with respect to the section a-a, and l/L=1/5. 

Case 2: four orifice sets are symmetrical with respect to the section a-a, and l1/(L/2)=1/5, 

l2/(L/2)=4/5. 

Case 3: four orifice sets are symmetrical with respect to the section a-a. There is an exhaust vent in 

the axial middle position of the bearing. Thus, the whole bearing is divided into two identical 

independent small aerostatic journal bearings and the section b-b is the axial middle plane of the small 

aerostatic journal bearing. Two orifice sets are symmetrical with respect to the section b-b. The axial 

length of the small aerostatic journal bearing is L/2, and l3/(L/2)=1/5. 

Case 4: six orifice sets are symmetrical with respect to the section a-a, and l4/L=1/10, l5/L=1/4, 

l6/L=2/5. 
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Figure 1. Four orifice layouts of the aerostatic journal bearing. (a) Case 1. (b) Case 2. (c) Case 3. (d) 

Case 4. 

3.  Computational model 

3.1.  Governing equations 

The dimensionless Reynolds equation is depicted in equation (1) [15,16] 
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where  x  and z  are dimensionless bearing numbers, x  and z  are dimensionless Cartesian 

coordinates, h  is the dimensionless thickness, p  is the dimensionless pressure. 

In this study, the dimensionless Reynolds equation has the following boundary conditions. 

⚫ Pressure at the outer border of the bearing: p=pa, pa is ambient pressure; 

⚫ Pressure at the symmetric boundary: 0
p

n


=


, n is the normal direction of the symmetric 

boundary; 

⚫ Pressure at the orifice boundary: p=pr, pr is the pressure at the orifice outlet. 

The numerical solution of the Reynolds equation is calculated by FEM with the triangular element, 

and the finite element formula of the Reynolds equation is deduced as follows 

D

L
l1

l2
a

a

(b)

D

L/2 L/2

l3 a

a

b

b

(c)

D

L
l4

a

l5
a

l6(d)



2nd International Conference on Numerical Modelling in Engineering

IOP Conf. Series: Materials Science and Engineering 657 (2019) 012044

IOP Publishing

doi:10.1088/1757-899X/657/1/012044

4

 

 

 

 

 

 

( ) ( )
( )

( ) ( )

( )

3

2

1 2

1

1

1 2

2

0
2

eT e eT eT e

i i i
e

e i

e
eT e eT

i i
e

e i

d xd z c b Q
e

c u b d xd z
e

i , , ,q










 






+ −

− + =

                                                         = 



 

N h c b f

h N N f  
(2) 

where Ne is the shape function, he is the column matrix of the node thickness, ci and bi are the 

coefficients of the interpolation function, ce and be are the coefficient matrixes of the interpolation 

function, fe is the column matrix of dimensionless node pressure square, Q  is the mass flow factor, i  

is the Kronecker function, u  and   are the dimensionless velocities, λ is the bearing coefficient. 

Iteration method is applied to solve the finite element formula and the unknown nodes’ pressures 

are obtained. Furthermore, properties of the aerostatic journal bearing, such as load capacity, attitude 

angle, volume flow rate and stiffness, can be calculated based on the obtained air film pressure (to 

study the calculation theory in detail, please refer to Liu et al [16]). 

3.2.  Computational domain 

In this study, the computational domain of each aerostatic journal bearing is determined by half of the 

fluid zone which is symmetrical with respect to section a-a (section b-b for case 3). The meshed 

computational domain with right triangle elements and boundary conditions are illustrated in figure 2. 

Each orifice is regarded as a point in the domain and only one node is distributed to an orifice zone. 

 

 

Figure 2. Meshes and boundary conditions of the computational domain (case 4). 

 

Grid independence test is conducted to determine the computation grid size. Case 3 is chosen as the 

testing object. Two size schemes are scheduled as follows, scheme A is that the circumferential length 

of the bearing is equally cut into 96 parts in Z direction and the axial length is equally cut into 60 parts 

in X direction, producing 5856 nodes and 11520 triangular elements; Scheme B is that the 

circumferential length of the bearing is equally cut into 120 parts in Z direction and the axial length is 

equally cut into 60 parts in X direction, producing 7320 nodes and 14400 triangular elements. 

Rotational speed (n) of the bearing is 0 r/min, and the eccentricity ratios (ε) of the bearing is 0.3. The 

calculated load capacities and volume flow rates of the case 3 bearing are presented in table 1. 

It can be found from table 1 that there are very small differences of the performance parameters 

between scheme A and scheme B. Besides, the grid quantity of scheme A is less than that of scheme 

B. Hence, scheme A is employed to mesh the computation domain. 
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Table 1. Load capacities and volume flow rates of two size schemes. 

Parameters Scheme A Scheme B Scheme A Scheme
100%

Scheme A

 −  


 
 

Load capacity (N) 126.16 124.98 0.94% 

Volume flow rate (L/min) 85.94 85.4 0.63% 

3.3.  Experimental verification 

In order to verify the aforementioned analysing method, experimental results tested by Chen et al [9] 

are employed to this study. Air film stiffnesses of the bearings reported by Chen et al [9] are 

numerically analysed under condition of various supply pressures based on the proposed 

computational method. Table 2 presents the experimental and calculated results, indicating that the 

maximum difference between the experimental and calculated values is 10.02% which is acceptable 

for engineering purposes. Therefore, the proposed computational model is validated. 

 

Table 2. Experimental [9] and calculated stiffnesses of aerostatic journal bearings. 

Supply pressure (MPa) Experimental (N/μm) Calculated (N/μm) Error (%) 

Front bearing (L/D=1.5) 

0.6 10.1 11.038 -9.29 

0.7 12.5 13.752 -10.02 

0.8 16.2 16.903 -4.34 

0.9 19.2 20.629 -7.44 

Rear bearing (L/D=1.0) 

0.6 8.50 8.8733 -4.39 

0.7 10.5 11.140 -6.10 

0.8 13.6 13.836 -1.74 

0.9 16.5 17.086 -3.55 

4.  Results and discussions 

An analysing procedure is developed by MATLAB. The nonlinear equations are numerical solved by 

the ‘fsolve’ function with the termination tolerance of 1e-20. Pressure distribution, load capacity, 

attitude angle, volume flow rate and air film stiffness of four orifice layouts are thoroughly studied at 

various speeds and eccentricities. 

Dimensionless air film pressure distributions of four orifice layouts under two running conditions 

(n=0 r/min, ε=0; n=200,000 r/min, ε=0.3) are shown in figure 3. It should be noted that the whole 

aerostatic journal bearing of case 3 is divided into two identical independent small aerostatic journal 

bearings and the dimensionless pressure distributions of each small aerostatic journal bearing are 

shown in figures 3(e) and 3(f). It can be found from figures 3(a), 3(c), 3(e) and 3(g) that an identical 

pressure value appears among twelve orifices of each orifice set along the circumferential direction 

when there is no eccentricity. Similar pressure profiles happen between case 1 and case 3, and the 

pressure distributions of case 2 and case 4 are also similar. What’s more, the pressure uniformity 

decreases as in the sequence of cases of  4, 2, 1 and 3 under the same operating condition. 

The load capacities of aerostatic journal bearings with four orifice layouts under working 

conditions of diverse rotational speeds and ε of 0.3 are described in figure 4. Figure 4 illustrates that 

load capacities of four orifice layouts increase as rotational speeds increased at ε of 0.3, and the load 

capacity of case 1 has the maximum growth rate. The load capacity of case 3 is the biggest one among 

four orifice layouts at rotational speeds from 0 r/min to 160,000 r/min, and the load capacity of case 1 

becomes the largest one when the rotational speed is more than 170,000 r/min. Case 4 has the lowest 

load capacity at rotational speeds from 0 r/min to 200,000 r/min, and case 2 has the second lowest load  
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Figure 3. Dimensionless pressure profiles of four orifice layouts. (a) Case 1 (n=0r/min, ε=0). (b) Case 

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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1 (n=200,000 r/min, ε=0.3). (c) Case 2 (n=0 r/min, ε=0). (d) Case 2 (n=200,000r/min, ε=0.3). (e) Case 

3 (n=0 r/min, ε=0). (f) Case 3 (n=200,000 r/min, ε=0.3). (g) Case 4 (n=0r/min, ε=0). (h) Case 4 

(n=200,000 r/min, ε=0.3). 

 

 

Figure 4. Load capacities of four orifice layouts with various rotational speeds. 

 

capacity at rotational speeds from 30,000 r/min to 200,000 r/min. For cases 1, 2 and 4, the load 

capacity decreases with increasing orifice sets at speed of more than 20,000 r/min. Based on the 

aforementioned analysis, increasing orifice sets is not beneficial to increase the load capacity of the 

aerostatic journal bearing. However, the aerostatic journal bearing which is divided into two identical 

independent aerostatic journal bearings can greatly improve the load capacity at rotational speeds from 

0 r/min to 160,000 r/min. 

 

 

Figure 5. Attitude angles of four orifice layouts with various rotational speeds. 

 

The attitude angles of aerostatic journal bearings with four orifice layouts under running conditions 

of diverse speeds and ε of 0.3 are shown in figure 5. It can be found from figure 5 that the attitude 

angles of case 1 and case 2 go up first and then they will go down with advancing speeds, and the 

attitude angles of case 3 and case 4 increase with increasing rotational speeds but the increasing rate is 

gradually slowed down. For cases 1, 2 and 4, the attitude angle increases with increasing orifice sets at 

speed of more than 110,000 r/min. However, case 3 has the lowest attitude angle at rotational speeds 
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from 0 r/min to 200,000 r/min, which means that case 3 has the lowest whirl force, presenting that 

case 3 has the best stability among four orifice layouts. 

Volume flow rates of four orifice layouts at disparate speeds and ε of 0.3 are illustrated in figure 6. 

Figure 6 describes that the volume flow rates of four cases slowly decrease with increasing rotational 

speeds in general. For cases 1, 2 and 4, the volume flow rate increases with advancing orifice sets 

under identical operating conditions. The volume flow rate of case 3 is larger than those of other cases 

under the same operating conditions. The volume flow rates of four orifice layouts are ranked with 

sort descending under identical conditions, i.e. cases of 3, 4, 2 and 1. Based on the aforementioned 

analysis, the aerostatic journal bearing which is divided into two identical independent aerostatic 

journal bearings consumes the largest quantities of pressurized gas. 

 

 

Figure 6. Volume flow rates of four orifice layouts with various rotational speeds. 

 

Figure 7 depicts air film stiffnesses of four orifice layouts under conditions of various eccentricities 

and n of 200,000 r/min. 

 

 

Figure 7. Air film stiffnesses of four orifice layouts with various eccentricity ratios. 
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and then increase with increasing eccentricity ratios. For cases 1, 2 and 4, the air film stiffness 

decreases with increasing orifice sets under the same eccentricity ratios, presenting that increasing 

orifice sets cannot enhance the air film stiffness of the bearing. Eccentricity ratio of 0 is the point at 

which the bearing is firstly subjected to an external force. Hence, the air film stiffness at ε of 0 is the 

greatest important to the bearing among all air film stiffnesses. The difference is 4.27% between the 

air film stiffnesses of case 1 and case 3 at ε of 0, which can be ignored, presenting that the air film 

stiffness of case 3 is acceptable for engineering purposes with respect to that of case 1. 

5.  Conclusions 

This paper investigated influences of various orifice layouts on properties of the aerostatic journal 

bearing by numerically solving the Reynolds equation based on FEM, and air film pressure, bearing 

load capacity, bearing attitude angle, bearing volume flow rate and air film stiffness of four different 

orifice layouts are analyzed under different operating conditions. Based on the aforementioned 

analysis results of four orifice layouts, it can be concluded that increasing orifice sets is not beneficial 

to strengthen abilities of aerostatic journal bearings. Aerostatic journal bearing which is divided into 

two identical independent aerostatic journal bearings (case 3) has the relative optimal performance, the 

highest load capacity, the lowest attitude angle and modest air film stiffness, at rotational speeds from 

0 r/min to 160,000 r/min. However, the case 3 bearing consumes the largest quantities of pressurized 

gas. Based on the obtained analysis results, engineers can better design the orifice layout for higher 

precision aerostatic journal bearing with a large length-diameter ratio. 
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