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Abstract. In the geotechnical engineering, it is a significant issue to construct the numerical 
models for simulation analysis based on the observation data. In this study, sparse modeling 
used as an effective modeling method in the field of machine learning and image processing 
was applied to the geotechnical engineering and its effectiveness was examined. Aa a case 
study based on the field observation data, the fused lasso which is a typical method of the 
sparse modeling was applied to model the velocity structure of the subsurface ground using the 
PS logging data. As a result of examination, it was found that simplified models can be 
obtained by increasing the value of the regularization parameter. 

1. Introduction 
In order to simulate the seismic ground motions, it is necessary to prepare the velocity structure model 
of the subsurface ground. Since there is arbitrariness in the manually preparation of analytical models 
from bowling data, more objectively modeling method is required. 
Recently, sparse estimation has been utilised as an effective modeling method in the field of machine 
learning [1] and image processing [2, 3]. In this study, sparse modeling was applied to the 
geotechnical engineering and examined its effectiveness. Fused lasso which is a representative method 
of the sparse modeling was applied to model the velocity structure of the ground using PS logging data. 

2. Theory 
The fused lasso which is a kind of generalized lasso proposed by Tibshirani and Taylor (2011) [4] was 
referred. The theory of the generalized lasso and the fused lasso is described below. 

2.1. The generalized lasso 
In this study, following linear regression equation is considered as a basic model. 
   1 1, 2 2, ,i i i m m iy x x xβ β β= + + +  ( )1,2, ,i n=    (1) 
In Eq.(1), iy  is an induced variable, ,m ix  is an explanatory variable, and mβ  is a regression 
coefficient. 
 Precede the formulation of generalised lasso, the mathematical notations are defined as follows. 

1⋅  is the L1 norm. And, 2⋅  is the L2 norm. According to Tibshirani and Taylor (2011) [4], the 
generalized lasso is amounted to the following optimization problem. 

   2

2 1

1ˆ arg min
2

λ∈ − +
β

β y Xβ Dβ     (2) 

Where, β̂ is a generalized lasso solution vector, y  is a vector of induced variable, X is a matrix of 
explanatory variables, D is a penalty matrix, and 0λ ≥ is a regularization parameter. The solution 
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can be obtained by solving the equivalent Lagrange dual problem. The relationship between the primal 
and dual solution is as follows. 
   ( ) ( )1ˆ ˆT T T−

= −β X X X y D u      (3) 

Therefore, solving for û  in Eq.(3) brings the solution β̂  in Eq.(2). 

2.2. The fused lasso 
As a simple example of the generalized lasso of Eq.(2), the 1D fused lasso is formulated as follows. 

   ( )
1

2
1

1 1

1ˆ arg min
2

n n

i i i i
i i

y β λ β β
−

+
= =

= − + −∑ ∑
β

β    (4) 

Here, Eq.(4) corresponds to setting X  and D  in Eq.(2) to be as follows. 
   =X I        (5) 
and 

   

1 1 0 0 0
0 1 1 0 0

0 0 0 1 1

− 
 − =
 
 

− 

D









    (6) 

Moreover, iy  indicates an observation data. 

3. Results 
The sparse modelling was applied to model the ground velocity structure by using the PS logging 
results of the subsurface ground obtained in the heavily damaged area of the 2016 Kumamoto 
earthquake. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Borehole survey sites in Mashiki town (adapted from Yoshimi et al., 2017 [5]) 
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Figure 2. Modeling of the suspension PS logging results at GS-MSK-1 (Number of observed data: 104) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Modeling of the suspension PS logging results at GS-MSK-2 (Number of observed data: 141) 
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Figure 4. Modeling of the suspension PS logging results at GS-MSK-3 (Number of observed data: 103) 

3.1. Outline of the survey data 

The PS logging results carried out by Yoshimi et al. (2017, 2016) [5, 6] at three places around 
Miyazono and Yasunaga areas in Mashiki town, Kumamoto prefecture were used. Miyazono and 
Yasunaga were heavily damaged areas struck by the 2016 Kumamoto earthquake (Mw 7.0) occurred 
on April 16. It was a survey conducted to resolve the mechanism of earthquake damage in the area. 
The ground in the survey area consists of the shallow volcanic ash soil and the deeper pyroclastic flow 
layer from Mt. Aso. The surveyed sites are shown in Figure 1. Since the suspension type PS logging 
was carried out, high resolution data was obtained. The step size in the depth direction is 50 cm. 
The PS logging data obtained at the three sites are shown Figure 2 to Figure 4. In these figures, open 
circles indicate observed data. 

3.2. The sparse modeling of PS logging data  
The sparse modeling of PS logging data is shown in the Figure2 to Figure 4. Each figure shows the 
fused lasso solutions when the value of the regularization parameters (λ ) are changed. The degrees of 
freedom (dof) of the estimated model are also showed. 
Regardless of the surveyed sites, the estimated model follows the fluctuation of the observation data 
when the value of the regularization parameter is small. On the other hand, with the increasing 
regularization parameter (λ ), it can be seen that the obtained estimation model has many consecutive 
parts and the inflection points are decreasing. The regularization term of Eq.(4) represents the absolute 
value of the difference between adjacent model parameters. By minimization of this equation, 
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estimated values with reduced numbers of discontinuous points have been obtained. Such results are 
similarly obtained for both P wave velocity (Vp) and S wave velocity (Vs). 
 

 
Figure 5. Relationship between the regularization 
parameter and the dof of estimated model 

 
Figure 5 shows the relationship between the regularization parameter and the dof of estimated model. 
In this figure, symbols means the results of sparse estimation, and the broken line represents their 
regression. 

4. Conclusions 
In this paper, the sparse modeling was applied to the geotechnical observation data and examined its 
effectiveness. The fused lasso, which is a typical method of sparse modeling, was applied to model the 
velocity structure of the ground by using the PS logging data. The findings obtained in this research 
are summarized below. 

 The 1D fused lasso was applied to model the velocity structure of the ground by using the 
continuous data with large fluctuation. The applicability of this method to the PS logging data 
was indicated. 

 It was found that simplified models can be obtained by increasing the value of the regularization 
parameter. 

 A negative correlation was found between the logarithm of the normalization parameter and the 
dof of the estimation model. 

In the future, the applicability of the space modeling to another kind of observation data will be 
investigated to confirm the validity. 
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