The following article is Open access

Synthesis of (Au)Ag core-shell nanocomposite in the water- ethanol mixture and its optical properties

, , , and

Published under licence by IOP Publishing Ltd
, , Citation A V Abakshonok et al 2014 IOP Conf. Ser.: Mater. Sci. Eng. 64 012038 DOI 10.1088/1757-899X/64/1/012038

1757-899X/64/1/012038

Abstract

The technique of synthesis of (Au)Ag core-shell bimetallic nanocomposite was developed. Gold seed nanoparticles (NPs) were obtained by HAuCl4 reduction with sodium citrate at ultrasonic treatment during 3 hours in a mixture of water – ethanol (1:1). Then, the surface of gold NPs was modified by silver. In the presence of polyvinylpyrrolidone (PVP) K30 (Mw ~ 24000) and K90 (Mw ~ 360000) the coreshell (Au)Ag NPs of spherical shape were formed. They are characterized by aggregate stability and well-defined absorption maximum at 400-514 nm. Composite (Au)Ag, prepared in the solution without a polymer or in the presence of carboxymethylcellulose (CMC), sodium polystyrene sulfonate (PSS), dextran T100 and T500, had a broad band plasmon resonance in the whole range of visible spectrum. The ability to use the (Au)Ag core-shell nanoparticles in absorption nanospectroscopy based on the phenomenon of plasmon resonance energy transfer (PRET) was evaluated. In the presence of 0,1-2,0 μM of water-soluble cationic Cu (II) -5,10,15,20-tetrakis (4-N-methyl pyridinium) porphyrin (CuTMPyP4) distinct dips due to plasmon quenching matched the absorption maximum of CuTMPyP4 were detected in the resonant scattering spectrum of (Au)Ag solution.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/64/1/012038