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Abstract. This paper proposes an indirect linear matrix inequality (LMI) approach to design 

one step anti-windup dynamic output feedback compensator for a class of nonlinear systems 

subject to actuator saturation. When the system state satisfies certain conditions, the nonlinear 

system can be reconstructed accurately by T-S fuzzy model, based on Lyapunov stability 

analysis and a result about matrix inequality, we show that the feasibility of an LMI guarantees 

the solvability of the corresponding one step anti-windup compensator. Once the solvability 

issue is determined, then we give an algorithm of one step anti-windup nonlinear dynamic 

output feedback compensator. The effectiveness of the proposed method is illustrated with 

numerical example. 

1. Introduction 

Actuator saturation is unavoidable in almost all real systems. In some cases, it may lead to system 

instability. In the literature, several methods now exist to handle saturation effects, but the most 

popular and effective one remains the anti-windup (AW) approach[1]. LMI-based synthesis of anti-

windup compensators has been proposed recently to synthesize either static[2] or dynamic[3] anti-

windup compensators; an overview of these results can be found in the survey[4]. Most of these works 

deal with a two step method in which the controller and the AW strategy are designed separately[5]. 

An alternative solution called one step method, which designs the controller and the AW compensator 

simultaneously, has been proposed[6].  

Using T-S fuzzy model, the nonlinear system can be reconstructed accurately, then LMI-based 

relaxed nonquadratic stabilization conditions for nonlinear systems can be presented[7]. For 

technological or economic reasons, the state variables are not all measured in most real-world 

applications[8].  

The note is organized as follows. The problem stated in Section 2. The main result is stated in 

Section 3. Section 4 gives example. Finally, Section 5 gives Some concluding remarks.  

Notations. For a real symmetric matrix M , 0M   and 0M  , means the matrix is positive 

definite and negative definite respectively. For two symmetric matrices, A and B , A B means that 

0A B−  , 
TM  denotes the transpose of the matrix M . ( )M a  denotes the ath row of matrix M , and

T T( ) ( ( ))M a M a= . Here, THeM M M= +  for real square matrix M ,  stands for the symmetric 

blocks. mI  denotes the m m  dimension identity matrix. diag( , )A B  is a block-diagonal matrix. 

2. Problem statement 

Consider the autonomous continuous time-invariant nonlinear system with input saturation 
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 ( ) ( ( )) ( ) ( ( ))sat( ( )), ( ( )) ( )x t f x t x t g x t u t y h x t x t= + =  (1) 

where ( ) nx t  , ( ) mu t  , and ( ) py t  are the plant state vector, the control input and the output 

of the system, respectively. Continuous time-invariants matrices function ( ) , ( )n n n mf x g x   , 

( ) p nh x  . Saturation function  0sat( ( )) sign( ( ))min , ( ) , 1,2, , ,i i i iu t u t u u t i m= = where 0iu denotes 

the symmetric amplitude bound relative to control input. 

Consider exact T–S fuzzy model, 

Rules iR : if 1( )z t  is 1,iF  2 ( )z t  is 2 ,iF  ( )jz t  is ,ijF  and ( )sz t  is ,isF  then 

 ( ) ( ) sat( ( )), ( ), 1,2, , , 1,2, ,i i ix t A x t B u t y C x t i q j s= + = = =  (2) 

with ijF  representing the fuzzy set j of each rules iR , and matrices n n

iA  , n m

iB  , p n

iC  . 

Assumption 1. ( , )i iA B  is stabilizable and ( , )i iA C  is detectable, 1,2,i q= .  

Then the system (1) can be refactored as 

 
1 1

( ) ( )( ( ) sat( ( ))), ( ) ( ) ( )
q q

i i i i i

i i

x t t A t B u t y t t C x t 
= =

= + =   (3) 

An important issue related to fuzzy control systems is that the nonlinear T–S representation (2) 

usually has a specific bounded domain of validity Eq. (1). One way to represent such domain of 

validity is by a polyhedral set  ( ) , 1,2, ,n

i ix x L x d i l =   = , with 1 n

iL  , 0id  . consider 

the set 

T

1 2

1

( ) ( ( ), ( ), , ( )) ( ) 0, ( ) 1
q

q i i

i

t t t t t t     
=

  
 = =  = 

  
  

where 
1

( ) ( ) ( ) ( 1,2, , )
q

i i j

j

t t t i q  
=

= =  and functions 
1

( ) ( ( ))
s

i ij j

j

t F z t
=

= , ( ( ))ij jF z t  are the 

grades of member functions corresponding to the fuzzy terms ijF . 

We introduce an 
cn  order dynamic output stabilizing compensator 

 1 1

( ) ( )( ( ) ( ) - ( ( ))), ( ) ( )( ( ) ( ))
q q

c i ci c ci ci i ci c ci

i i

x t t A x t B y t E u t u t t C x t D y t  
= =

= + = + 
 (4) 

where ( ) cn

cx t  , ( ) : m mu →  is the dead-zone nonlinearity, given by ( ) sat( )u u u = − .where 

, , ,ci ci ci ciA B C D  are supposed to be time-invariant matrices of appropriate dimensions. 
ciE  is an anti-

windup gain matrix. From Eq. (3) and Eq. (4), we can represent the closed loop system by: 

 
1 1 1 1 1

( ) ( ) ( )( ( )), ( ) ( )
q q q q q

i j k ijk ij i j ij

i j k i j

t t t A E u u t t K        
= = = = =

= − =   (5) 

with 
c

x

x


 
=  
 

, 
i i cj k i cj

ijk

cj k cj

A B D C B C
A

B C A

+ 
=  
 

,
i

ij

cj

B
E

E

 
=  
 

, ij ci j ciK D C C =   .  

Problem. Determine the matrices , , , ,ci ci ci ci ciA B C D E  and give a region of local stability for the 

closed loop system (5). And then optimize the attraction domain estimation. 
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3. Main Results 

3.1. Dynamic output feedback stabilization 

We define polyhedral set  0
1 1

( ) ( ( ) ( )) ( ) , 1,2, ,
q q

ij ij a
i j

t K a G a t u a m
= =

 = −  =ξ ξ . 

 Lemma 1. Consider the function ( )u  defined as before. If ( )t   then the relation 

 
T ( ( )) ( ( ) ( ( ))) 0, , 1,2, ,iju t T G t u t i j q  −  =

 (6) 

is verified for any matrix m mT   diagonal and positive definite.  

 Lemma 2(Schur complement)[9]. Let symmetric matrix
11 12

22*

A A
A

A

 
=  
 

, then, 0A   if and only if 

11 0, 0A     or 
22 0, 0A    , where   can be changed as  ,   or  , with Schur complement

T 1

22 12 11 12A A A A− = − , 1 T

11 12 22 12A A A A− = − . 

Suppose P  is a positive definite matrix, ijN  is a matrix of appropriate dimensions such that 

 

T T

2

0

( ) ( )
0, , 1,2, , , 1,2, ,

*

ij ij

a

P K a PN a
i j q a m

u

 −
 = = 

   (7) 

 

T

11

2
0, 1,2, ,

*

i

i

P L
i l

d

 
 = 

   (8) 

We shall partition P , Q , and N  as 
11 12

22

P P
P

P

 
=  

 
, 

11 12

22

Q Q
Q

Q

 
=  

 
, ( )(1) (2)

ij ij ijN N N= , with 

11 11, n nP Q  , 
22 22, c cn n

P Q


 , 
12 12, cn n

P Q


 (1) m n

ijN  , (2) cm n

ijN


 .let ,ij ijG N P=  we have 

2 1 T

0 ( ( ) ( )) ( ( ) ( )) 0a ij ij ij iju K a G a P K a G a−− − −  , let  TΛ ( ) ( ) ( ) 1t t P t  =  , If ( ) Λt  , based on 

Holder inequality, we have 
0( ( ) ( )) 1ij ij aK a G a u−  , If (8) are satisfied, then T

11 ( )( ) 0i i i iP L d L d−  , 

when ( )t  , we have ( ) ( )
T

T T T T T

11( )( ) 0 0 1i i i ix L d L d x x P x x P x =  , which implies 

( ) ( )x t x . Define Lyapunov function TV P = , then 

T T T

1 1 1 1 1 1

( ) ( ) ( )( He( ) 2 ( )) ( ) ( ) ( )
q q q q q q

i j k ijk ij i j k ijk

i j k i j k

V t t t P PE u t t t            
= = = = = =

= −     

Where 
( )u






 
=  
 

, 
THe( )

* 2

ijk ij ij

ijk

P PE G T

T

 − +
 =  

− 
, let 1Q P−= , 1

1 ,T T −=  pre- and post- 

multiplying ijk  by 
1diag( , )Q T , and we have  

 

T

1

1

He( )
0, , , 1,2, ,

* 2

ijk ij ijQ E T N
i j k q

T

 − +
 = 

−   (9) 

3.2. Algorithm of one step anti-windup nonlinear output dynamic compensator  

Lemma 3[10]. Given a symmetric matrix 
n n  and matrices 

i nX  , 
j nY  . There exists a 

matrix   of compatible dimension such that
T T T 0X Y Y X +  +   , if and only if T 0,X XN N   
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T 0,Y YN N   where 
XN  and 

YN  are any matrices whose columns form bases of the null spaces of X  

and Y  respectively. 

Let 
0

0 0

i

i

A
A

 
=  
 

, 
0

0

i

i

B
B

I

 
=  
 

, 
0

0

cj cj

j k

cj cj k

A B I
C

C D C

   
 = =   

  
， , 

T

00
,

0 00 0

ji
i j

B
B

   
=  =   

  
,

1 T

1

1

He( )

* 2

i

i ij

cjQij

BT
AQ N

E TG

T

  
− +  

=   
 − 

,
0

0 0

k
Qk

C Q
C

 
=  
 

, then Eq. (9) can be expressed as 

 
THe( ) 0Qij i j QkG B C+    (10) 

By Lemma 3, the inequality (10) is equivalent to 

 
T T0, 0,

i i Qk Qk
Qij QijB B C C

N G N N G N   (11) 

Let 
0

,
0 0

k
k

C
C

 
=  
 

 
0

,
0

Q
Q

I

 
=  
 

 then  

1

T T 1 1 T T

Qk Qk k k k k k k
Qij Qij PijC C C C C C C CQ ij

N G N N Q G Q N N G N N G N−

− −= = = , 

where 

1 T

1

1

He( )

* 2

i

i ij

cjPij

BT
PA P PN

E TG

T

  
− +  

=   
 − 

. When T( 0)
iB

N  , we have 

T 0

00

0

i

i

B

B

m m

N

N

I 

    
     =    
 
 

, 

then 

 T T T T

11

T T T (1) T

11 1T

1

0,

He( ) ( )
0.

* 2

i i i i

i i

i i ijB B B B

QijB B

Q

N AQ N N BT N N
N G N

T




 − +
=    − 

 (12) 

When ( 0)
kCN  , we have 

0

00

0

k

k

C

C

m m

N

N

I 

    
    

=    
 
 

, define 12j cjM P E= , (2) T

12 ( )ij ijR P N= , then  

 

11

T T T T (1) T T

11 11 1 1 11T

1

0,

He( ) ( )
0.

* 2

k k k k k k

k k

C i C C i C j C ij C ij

PijC C

P

N P A N N P BT N M T N P N N R
N G N

T




 − − + +
=    − 

(13) 

If we choose the full column rank matrix 
12P , then we can determine the matrices P  and Q  by the 

condition of PQ I= , and if 

 
11

11

0
P I

I Q

 
 

 
 (14) 

Based on the lemma 2, we have T 1 T 1

22 12 11 12 12 11 11 11 11 12( ) 0P P P P P P P Q P P− −− = − −  , and then 

0, 0P Q  .  

Hence, we have the algorithm of one step anti-windup nonlinear output dynamic compensator 
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Step 1. Solve the Eq. (12) to get the matrices 
11Q , 

1T , (1) , , 1,2, ,ijN i j q= ; 

Step 2. Solve the Eq. (8), Eq. (13) and Eq.(14) to get the matrices 
11P , jM , , , 1,2, ,ijR i j q= ; 

Step 3. Choose full column rank matrix 
12P  and solve PQ I=  to get the matrices P , Q , and we 

have  T 1 T

12 12 12( )cj jE P P P M−= , ( )
1

(2) T T

12 12 12ij ijN R P P P
−

= , , 1,2, ,i j q= ;  

Step 4. Solve the following equations (Eq. (7) and Eq. (9)) to get the matrices , , ,cj cj cj cjA B C D . 

1,2, ,j q= . 

 ( ) ( )

T

TT
(1) (2)

0

He( ) 0,

0,
*

Qij i j Qk

ci j ci ij ij

m

G B C

P D C C P N N

U

 +  

  − +
  
 
 

 (15) 

Where 2 2 2

0 01 02 0diag( , , , )m mU u u u= . 

Remark 1: If n m  or n p , then step 1 to step 3 can be problematic in the following three 

situations. 

Case 1: rank( ) rank( ) , , 1,2i kB C n i k q= = = , then we have T 0, , 1,2, ,
ki

CB
N N i k q= = = , we will 

get (1)

ijN , (2)

ijN , cjE  by step 4 instead of step 1 to step 3. 

Case 2: rank( ) , 1,2iB n i q= = , and exist k  subject to rank( ) ,kC n  then we have 

T 0, 1,2,
iB

N i= =  ,q , define (1) T

11( )ij ijS P N= , solve Eq.(13) we can get ijS , then we get (1)

ijN . 

Case 3: rank( ) , 1,2kC n k q= = , and exist i  subject to rank( ) ,iB n  then we have 

0, 1,2, ,
kCN k q= = , we will get (2)

ijN , cjE  by step 4 instead of step 3. 

Remark 2:  It should be remarked that although Assumption 1 has not been explicitly used in the 

reasoning of the algorithm, but it is necessary for the Eq. (11).  

3.3. Attraction domain estimation and optimization 

The problem of maximizing  T

11( ) ( ) 1x x t P x t   can be accomplished by solving the optimization 

problem:
11

11
, , , , 1,2,

subject tomin , , (8),(13),(14 LMI )s
j ijP M R i j q

I P 
=

 . 

4. Numerical example 

Consider the following chaos Rossler system with actuator saturation:  

 ( ) ( ( )) ( ) sat( ( )) , ( ) ( )x t f x t x t B u t d y t Cx t= + + =  (16) 

With 3( )x t  , 3( )u t  , ( )y t  , 

1

0 1 1

( ) 1 0.2 0

0 0 5

f x

x

− − 
 

=  
 − 

, ( )1 1 1C = , 3

0

, 0

0.2

B I d

 
 

= =  
 
 

, 

when the initial value ( )
T

(0)= 0.8 1.5 0.5x − , it is easy to know  10.5x Lx =   is a invariant set 

of the system (16), ( )1 0 0 ,L =  Consider T-S fuzzy model: 

Rule 1: if 
1x  is larger (tend to be 10.5), then 

1 sat( ) ,x A x B u d y Cx= + + = ; 

Rule 2: if 
1x  is lesser (tend to be -10.5), then 

2 sat( ) ,x A x B u d y Cx= + + = . 

When x , the system (16) can be rewritten as 
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2

1

( )( sat( ) ),i i

i

x t A x B u d y Cx
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The three-order dynamic output stabilizing compensator is as follow: 
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Then we can get the closed loop system 
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0 1iu = . Combined with the algorithm of one step anti-windup nonlinear output dynamic compensator 

and correlative data, the feasible result with the help of LMI toolbox of MATLAB is obtained that: 
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After optimization, we have 11
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Figure 1. After introducing the compensator, 

the states diagram of system (18) are given in 

this figure 

Figure 2. The projection of attraction domain 

estimation before and after optimization onto 

plane 
1 2x O x- -  

  

Figure 3. The projection of attraction domain 

estimation before and after optimization onto 

plane 
1 3x O x- -  

Figure 4. The projection of attraction domain 

estimation before and after optimization onto 

plane 
2 3x O x- -  

As we can see, the algorithm has played an important role in resistance to saturation, and the 

system state tends to 0 after 20 seconds. and the attraction domain expanded significantly after 

optimization, and the optimization algorithm has played a good optimization effect. 

5. Conclusions 

An indirect LMI-based approach to design one step anti-windup dynamic output feedback 

compensator for a class of nonlinear systems subject to actuator saturation has been proposed. In this 

approach, we can give an algorithm to solve this actuator saturation control problem. Unlike the 

traditional two step anti-windup scheme, the proposed algorithm gives one step anti-windup.  
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