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Abstract. In order to understand the vapor injection flow characteristics of two-stage rotary
compressor in the course of compression, a mathematical model based on mass conservation
equation, energy equation and thermodynamic identity was established and proved by P-V
diagram testing results. Some useful conclusions about pressure in the intermediate chamber
and mass flow of vapor injection in the course of compression were also given out. The results
show that, gas backflow between the intermediate chamber and the vapor injection channel is
an important defection of two-stage rotary compressor which can be solved by the application
of injection valve in vapor injection channel. The injection valve can obviously reduce the gas
backflow and the power loss in the course of compression while increasing the pressure
fluctuation in the intermediate chamber. Experiments show that the COP of two-stage rotary
compressor with the injection valve increased by over 2% in ASHRAE/T working condition.

1. Introduction
The two-stage rotary compressor can overcome the shortcomings of heating capability reduction, poor
reliability and low efficiency of single-stage compressor in low temperature environment [1].
Therefore, it has been studied and applied in air source heat pump air conditioners, heat pump water
heaters and heating machines, especially in the cold regions of the world [2-4].

Vapor injection parameters are the key factors affecting the efficiency of the two-stage
compression system. Jin X and Jiang S et al. studied the fluctuation characteristics of intermediate
pressure and its influence on the performance, analyzed the effects of subcooling parameters and the
respective efficiencies of two compressors on the intermediate pressure, and proposed a volume-ratio
selection method based on weather data [5-7]. Xu S X et al. investigated the influence of vapor
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injection parameters on the relative injection mass, COP and exhaust temperature [8-9]. Redón A et al.
analyzed the design parameters (such as displacement ratio) and injection conditions of two-stage
cycles with four refrigerants [10]. The related researches haven't studied the course of vapor injection
in the single-machine two-stage rotary compressor, so it is impossible to guide the efficient design of
the intermediate chamber and the injection structure. In this paper, the flow characteristics of the
injection vapor are analyzed by numerical and experimental methods.

2. Mathematical model
Figure 1 shows the single-machine two-stage rotary compressor and its system cycle [11-12]. Figure 2
shows the p-h diagram of the two-stage expansion cycle with flash tank.
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Figure 1. The two-stage compression system Figure 2. p-h diagram of the system

The geometry, leakage and heat transfer models of rotary compressor are well known [13-14].
Therefore, only the intermediate chamber model and the injection channel model are explained below.

2.1 Model of the intermediate chamber
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Figure 3. Two-stage rotary compression mechanism and vapor injection structure
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As shown in Figure 3, each rolling piston divides each cylinder working chamber into a suction
chamber and a compression chamber. When the 1st stage crank angle is θ (0≤θ≤2π), the 2nd stage crank
angle is θ-π (-π≤θ-π≤π). The intermediate chamber is located between the 1st stage cylinder exhaust
valve and the 2nd stage cylinder suction port, and communicates with the flash tank through the
injection channels ABC. So, its thermodynamic parameters are affected by the thermodynamic state
and flow state of the inlet (the first stage cylinder exhaust), the outlet (the second stage cylinder
suction), and the variable port (the injection channel). Therefore, it belongs to a variable mass system.
The following assumptions are made: (a) The refrigerant is evenly distributed in the chamber, and the
state parameters are uniform; (b) The variations of the potential energy and kinetic energy are ignored.
The intermediate chamber is used as the control volume (CV). The energy equation, mass
conservation equation and thermodynamic identity [15] are expressed as:
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Substituting equations (3) and (4) into equation (1):
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Where, ECV is the total energy of control volume, Q is the heat exchange capacity between the
control volume and its wall, h is the enthalpy, u is the thermodynamic energy, cV is the heat capacity at
constant volume, v is the specific volume, p is the refrigerant pressure, ρ is the refrigerant density, T is
the temperature, and θ is the crankshaft angle. When p3>p4, the gas in the flash tank flows into the
control volume, then n=2. When p3<p4, the gas in the control volume flows into the flash tank, then
n=1. The heat exchange capacity Q is calculated based on the average Nusselt number Nu of the
Sieder-Tate equation [16].

2.2 Model of the injection channel
The gas in the flash tank is saturated vapor under the injection pressure (p3), and its state parameters
are determined by the working condition. Because both the flash tank and the control volume are filled
with refrigerants in a certain pressure, the flow is regarded as submerged outflow. As shown in Figure
3, the injection channel is divided into three sections, which are the injection channel inlet A, the
injection channel B and the injection channel outlet C.

Considering that the gas mass flow is not high and the pressure variation is slow, the flow in the
injection channel is assumed as follows: (a) Quasi-stationary adiabatic flow. (b) The gas in the pipe
can be compressed. (c) The potential energy of the refrigerant is ignored. (d) The heat exchange is
ignored. The governing equation for pipe flow is as follows [17].
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Table 1. Mathematical model of the vapor injection flow

Position Equation Expression

Inlet A
Energy equation 222

3333 5.05.05.0 fAAAfAAAAf ccpcp  
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dd
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Energy equation 0dd  ffP ccTc

Adiabatic equation 0dd





p
p

Outlet C
Energy equation 222

4444 5.05.05.0 fCCCfCCCCf ccpcp  

mass equation 444 fCCC cScS  

Where, cf is the flow speed of refrigerant, λ is the resistance factor of the injection channel, α is the
kinetic energy correction factor, ζ is the local loss coefficient, cp is the heat capacity at constant
pressure, d is the diameter of the injection channel B, and S is the cross-sectional area of flow.

2.3 Program
A simulation program of the course of vapor injection is established by using the software MATLAB.
The flow chart of calculation program is presented in Figure 4.
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Figure 4. Flow chart of calculation program
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The thermodynamic parameters of R410A are calculated by the software REFPROP. The
refrigerant parameters in the intermediate chamber, the mass flow and energy exchange of the vapor
injection are calculated at each small angle step with the crankshaft rotating for one cycle. So, the flow
characteristics in the course of vapor injection can be studied.

3. Model validation
A P-V prototype was made to measure the pressure at different working chambers. Figure 5 shows

the measuring point distribution and Figure 6 shows the P-V test system. The flange marking the angle
of crankshaft is set at the top of the crankshaft, and the crankshaft angle is measured by the
displacement sensor. By means of the above method, the variation of pressure with crankshaft angle
can be measured. The P-V prototype is connected to the compressor refrigeration capacity test bench
for testing. The cycle diagram of the test system has been given in the literature [18]. The analysis
method of experimental data is the same as reference [19].
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○1 -P-V prototype
○2 -Displacement
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○5 - PC measuring

software system

Figure 5. Measuring point distribution Figure 6. P-V test system
Taking the single-machine two-stage rotary compressor produced by GREE Electrical Appliances

Co., Ltd. as an example, the flow characteristic of vapor injection under ASHRAE/T condition was
simulated and measured. When testing the compressor with a flash tank, it is necessary to set the
injection pressure (p3) at the same time, in addition to the parameters specified in the working
condition. Figure 7 shows Experimental verification when p3=1750kPa.
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Figure 7. Experimental verification for vapor injection of two-stage rotary compressor
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From figure 7-(a), it can be seen that the simulated values of pressure in the intermediate chamber
(p4) are in good agreement with the measured values of P-V test. The maximum deviation between the
simulated and experimental values is less than 3% under different crankshaft angles. From figure 7-(b),
the calculation errors of mass flow of suction, injection and exhaust are all within 2.7%.

Furthermore, p4 has a pulsating characteristic, and the peak-valley difference reaches 290 kPa,
reaching 17% of the time-average value. The reasons are analyzed as follows. (a) The exhaust of the
1st stage cylinder has pulse characteristics. When the 1st stage cylinder exhaust valve is opened and
refrigerant is forced into intermediate chamber, the pressure rises rapidly. As shown in Figure 7-(a),
the inflection point where the pressure begins to rise rapidly appears at the exhaust angle of 156
degree. (b) Although the suction of the 2nd stage cylinder is continuous, the variation rate of the
suction volume has pulse characteristics. The difference of crankshaft angles between two cylinders is
180°. When the exhaust speed of the 1st stage cylinder is fast, the suction speed of the second cylinder
is slow. When the 1st stage cylinder does not exhaust or the exhaust speed is slow, the suction speed of
the 2nd stage cylinder is fast.

Therefore, the rate of mass exchange between the two cylinders and the intermediate chamber is
very mismatched, resulting in significant fluctuation of pressure in the intermediate chamber.

4. Simulation results & Discussions

4.1 Effect of intermediate chamber volume on vapor injection characteristic
The working volume of the 1st stage cylinder is V1, and the volume of intermediate chamber V4 is set
to be 1, 2, 3 and 5 times V1 respectively. The variations of p4 and the vapor injection mass flow �C�
are simulated as p3=1750kPa.
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Figure 8. The variety of p4
Figure 9. The variety of �C�

From Figure 8, the peak-valley difference of pressure fluctuation decreases continuously with the
increase of V4. When V4 = 5V1, the peak-valley difference of p4 is 141 kPa, which is only 32% of the
difference for V4= V1. So, the pressure fluctuation amplitude can be effectively reduced by increasing
the volume of the intermediate chamber and playing a buffer role. As can be seen from Figure 9, �C�
have some positive and negative values, and the negative values represent that the vapor flows back
from the intermediate chamber into the flash tank. The mass flow of the vapor backflow decreases
with the increase of V4.
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4.2 Effect of injection valve on vapor injection Characteristics
In order to eliminate the phenomenon of vapor backflow in the intermediate chamber, an injection
valve is installed at the outlet C of the vapor injection channel, and its effects on p4 and �C� are
compared by simulation as p3=1750kPa.
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From Figure 10, it can be seen that the pressure fluctuation of p4 is increased by using injection
valve, and the peak-valley difference is increased from 290 kPa to 388 kPa. The main reason is that
the valve closes the vapor injection channel when the 1st cylinder exhausts, which is equivalent to
closing the pressure relief channel of the intermediate chamber, so that the peak pressure is larger than
the value without injection valve. From Figure 11, it can be seen that the forward mass flow with
injection valve decreases, but the backflow of the vapor in the injection channel is avoided. The
effective mass flow increases by 18%, and it is only 35% of the total mass flow of the forward and
back flow without injection valve.

4.3 Effect of injection valve on flow power loss of vapor injection
Figure 12 shows the effect of injection valve on flow power loss of vapor injection. The flow power
loss without injection valve is defined as 100% when V4 = V1.
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Figure 12. The flow power loss of vapor injection

The flow power loss without injection valve decreases fast with the increase of V4, but the variation
of V4 has little effect on the power loss with injection valve. The flow power loss with injection valve
is significantly lower than that without injection valve, for example, the power loss decreases by 72%
when V4 = 2V1. The reason is that the pressure loss caused by back flow is much larger than that
caused by the injection valve. It can be seen that the back flow of the gas in the intermediate chamber
without the injection valve leads to the increase of the flow power loss and the decrease of the
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effective mass flow, which is an important factor affecting the performance of the two-stage rotary
compressor.

5. Optimized prototype verification
Figure 13 shows an injection valve structure of the two-stage rotary compressor, which includes a reed
valve and a baffle [20]. A demountable prototype was made, and different parts of the intermediate
chamber were replaced to verify the effect of the injection valve on the actual performance of the
compressor.

Suction pressure
Intermediate pressure
Exhaust pressure

Injection
valve

Intermediate
chamber

2nd stage
cylinder

1st stage
cylinder

Figure 13. Structure of injection valve for two-stage rotary compressor
Figure 14 and Figure 15 show the experimental performances of different compressors. The

operating frequency is 60 Hz under the ASHRAE/T condition. The cooling capacity and COP increase
first and then decreases with the increase of p3, and there exists a same optimum p3 to maximize the
capacity and COP. The reasons are as follows (as shown in figure 2): (a)when the injection pressure p3

is lower, the vapor can't be completely absorbed by the 2nd stage cylinder, which makes the refrigerant
(point 4) before the 2nd stage expansion valve not reach the saturated liquid state; (b) when p3 is higher,
the refrigerant (point 2) absorbed by the second stage cylinder contains a part of liquid, which makes
the refrigerant of point 4 reach the saturated liquid state, but h4 increases with the increase of p3; (c)
Once the suction of the secondary cylinder contains liquid, the mass flow rate of the 2nd stage cylinder
will increase dramatically, then the compressor will be in the state of hydraulic compression, thus the
performance will be rapidly attenuated.
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The optimum injection pressure is lower than that of the compressor without the injection valve,
because the effective mass flow of the compressor with injection valve is increased. In addition, the
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influence of the injection valve on the maximal capacity is not more than 0.5%. Compared with the
structure without injection valve, the optimal COP is increased by more than 2% by using injection
valve. The reason is that the power loss caused by the backflow from intermediate chamber increases
the power of the first stage cylinder.

6. Conclusions
Based on mass conservation equation, energy equation and thermodynamic identity of compressor
working process, a model reflecting the refrigerant state and flow characteristics in the intermediate
chamber of two-stage rotary compressor is established. P-V test shows that the simulation values of
the pressure and mass flow are in good agreement with the measured values.

The simulation results show that the pressure in the intermediate chamber has obvious fluctuation
characteristics. When the injection pressure is set to 1750 kPa under the ASHRAE/T condition, the
peak-valley difference reaches 290 kPa, reaching 17% of the time-average value. Increasing the
volume of the middle chamber can effectively reduce the pressure fluctuation and alleviate the
backflow in the injection channel. The injection valve increases the amplitude of pressure fluctuation
in the intermediate chamber, but the power loss of the injection is reduced by 72% (V4 = 2V1).

The validation results of the optimized prototype show that the COP of the two-stage rotary
compressor with injection valve is increased by more than 2% compared with the conventional two-
stage rotary compressor under the ASHRAE/T condition.
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