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Abstract. The paper deals with the impact of shocks on cargo securing during the road freight 
transport. Commonly used methods of cargo securing do not take into account the different 
quality of roads, therefore the cargo securing doesn´t have to comply with principles of safe 
fastening. The paper highligths the different values of shocks and inertia forces on different 
quality roads (highway and 3rd class road) based on data of conducted transport experiments. The 
resulting shocks (values of acceleration coefficients) are statistically significantly higher on 3rd 
class road than on highway even at half average speed. The optimization of calculation using 
acceleration coefficients and their correlation with the resulting inertia forces is included in 
separated part. The output of the paper is a methodical procedure to optimize the cargo securing 
during the road transport.  

1.  Introduction 
In today's globalized world, freight transport is playing an increasingly important role. Road transport 
plays a key role in ensuring door-to-door concepts not only individually but also in combination with 
other modes of transport - within multimodal transport. Within the European Union (EU), a total of 
14,608,049,000 tonnes of cargo were transported in 2017 [1]. The number of people killed as a result of 
a road accident (up to 30 days after the accident) was 25,300, with only 8% of them on motorways, 
another 37% in built-up areas and the largest portion – 55% on other roads [2]. Over the past 10 years, 
the proportion of truck accidents of the total number of accidents has been around 15% [3, 4], while it 
is estimated that up to 25% of all accidents caused by lorry drivers are caused by incorrect or insufficient 
cargo securing within the EU [5]. By simple calculation, it can be estimated that in 2017, almost 14,000 
people were killed on other roads and of the total number of persons killed was, by qualified estimation, 
a little less than 1,000 during traffic accidents caused by improperly or insufficiently fixed loads. 
Although there has been a significant decrease in the number of people killed on the roads over the last 
ten years (2007-2017), (by almost 34%) [6] the number of people killed due to improper cargo securing 
is still a relatively large number (almost 4% of the total number). In addition to this, property damage, 
which is caused by accidents not leading to death or personal injury, must be added. The statistics do 
not include damage to property, environmental damage, etc. that occurred during cargo transport 
activities – such as loading / unloading / reloading, storage or off-road movement (within businesses, 
on local and utility roads).  
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The aim of the article is to point out one of the reasons for the lack of load securing due to the rigid 
approach of European standards (especially EN 12195-1:2010). The acceleration coefficients presented 
do not take into account changes in transport systems over several decades and do not distinguish 
between different quality of transport routes or other aspects of freight transport. 

2.  Material and Methods 
 
2.1. Material 
To prove the differences between the monitored characteristics of selected types of transport routes, and 
justification of the limited validity of the use of prescribed acceleration coefficients, the relevant 
transport experiments were performed on a Tatra 810-V-1R0R26 13 177 6×6.1R vehicle (hereinafter 
referred to as “T-810”). The transport experiments were carried out on the highway (Brno – Vyškov 
route) and 3rd class road (Vyškov – Březina). The average transport speed was about a half on the 3rd 
class road (see below). 

Acceleration coefficients on individual axes (x – longitudinal, y – transverse and z – vertical) were 
used as the basic parameters for comparison. The three-axis accelerometer OMEGA – OM-CP-
ULTRASHOCK-5 was used for the measurement with the measuring range ±5g, which recorded the 
vibrations every second of transport. In the transport experiment, the climatic conditions were optimal 
without precipitation, the surface of the roads was dry and the visibility was excellent. The outside 
temperature was around +9 ° C. 

Two data sets (d1, d2) were obtained to perform statistical analysis. The dataset d1 contains the values 
of the acceeration coefficients (shocks) for all axes (formally marked cx, cy a cz), the number of values 
is 1,268 for each of the axes. The average transport speed in the first transport experiment (d1) was 
76.7 km·h-1. Similarly, in the data set d2, 401 values are for each axis and the average transport speed in 
the second transport experiment was 38.6 km·h-1. 

2.2. Methods 
To test the measured sets (statistical hypotheses), the significance level α = 0.01 and the following tests 
in the STAT1 environment were selected: 

- a test of compliance of mean values, 
- a test of compliance of variances [7]. 

Q-Q plots [8] were used to validate the normality of data sets before performing the tests. Part of the 
calculation is also ti determine the probability of exceeding the normatively set limits (πi), including 
double exceeding the normatively determined acceleration coefficients (γi) for both data sets. For the 
calculation, the number of exceedances of normatively determined acceleration coefficients according 
to EN 12195-1:2010 on individual axes was used: 

- cxn = 0.8, 
- cyn = 0.6, 
- czn = 1.0 [9], 

where cxn, cyn, or czn are the prescribed values of acceleration coefficients in longitudinal direction, 
or transverse direction, or vertical direction in relation to the motion of the tested vehicle. 

Two correlation coefficients are used to determine the correlation of the acceleration coefficients 
used in individual axis with the resulting values of inertia: 

- Spearman's rank correlation coefficient (ρ) 
- Kendall's concordance coefficient (W). 
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Indexes according to the respective axes and datasets are used to mark the calculated inertia forces 
(F). Using the aforementioned two correlation coefficients, a correlation is found between cx for both 
datasets (cx1, cx2) with inertia forces on the x-axis for a given dataset (Fx1, Fx2). Correspondingly, a 
correlation is found between cy for both datasets (cy1, cy2) with inertia forces in the y-axis for a given 
dataset (Fy1, Fy2). 

Inertia forces calculated using real-time acceleration coefficients on individual axes are calculated 
using the relations from EN 12195-1:2010 [9]: 

 
Fx = 

(cx  –  μ · cz)· m · g
2n · μ ·sin α

· fs      [N] 
 

(1) 

 
Fy = 

�cy –  μ · cz�· m · g
2n · μ ·sin α

· fs       [N] 
 

(2) 

 

3.  Results and discussions 
 
3.1. Results of acceleration coefficient analysis 
Using Q-Q plots, the normality of experimentally determined data was graphically verified. The data 
showed minor deviations from normality, theoretical quantiles and empirical quantiles were 
approximately on one line [10]. A parametric two-sample t-test was used to evaluate both data sets. In 
all three axes, a t-test was performed at the significance level α = 0.01 for two parameters: variance and 
arithmetic mean of the absolute values of the acceleration coefficients. 

The result was the rejection of the null hypothesis of variance compliance, or arithmetic means of 
absolute values and acceptance of an alternative hypothesis. Thus, it was proved that there are 
statistically significant differences between the two data sets at the significance level α = 0.01 for both 
tested parameters. These results point to the very different values of the shocks generated by the vehicle 
being monitored on the highway (d1) and on the 3rd class road (d2) despite the almost half the average 
speed of the vehicle on a lower-quality road. 

Furthermore, analogically, one-sided tests were carried out on the same level of significance by 
means of which it was tested whether the monitored vehicle generates on the 3rd class road (d1), even at 
half the average speed, higher shock values than when moving on the highway (d2). The outcome of the 
one-sided tests was the conclusion that even at half the average vehicle speed, which corresponds to 
normal traffic conditions on a given type of traffic route, the T-810 generates more shocks on the 3rd 
class road than on the highway. The stated conclusions also demonstrate the probability of exceeding, 
or double exceeding the prescribed acceleration coefficients given in EN 12195-1:2010 – see Table 1. 

Table 1. Probability of exceeding the normative limits (d1, d2). 
Characteristics πi (exceeding the norm) γi (double exceeding) 
              Coef. 
Dataset cx cy cz cx cy cz 

d1 0.0607 0.5505 0.0402 –* 0.0189 –* 
d2 0.6135 0.8504 0.4514 0.0424 0.2544 0.0274 

 

Table 1 shows that the probability of exceeding the normatively determined acceleration coefficients 
in all three axes is significantly higher for the second data set, i.e. during transport by 3rd class road, 
even at about half the average transport speed. Especially for the x-axis and z-axis, there are differences. 
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In the case of double exceedances, the situation is similar, although in the case of the x and z axes, the 
situation when the normatively set limits were doubled during highway transport (d1) is missing (the 
normative values in the x and z axes were not double exceeded in the transport experiment). The highest 
probability of double exceeding of the norm was recorded for d2 on the y-axis, which is mainly based 
on the lowest normative value (cyn = 0.6). 

3.2. Results of analysis of inertia forces 
The previous analysis needs to be supplemented by the calculation of inertia forces in the respective 
axes for the examined dataset (Fx1, Fx2, Fy1, Fy2), which actually acts on the fastener used – in this case 
the strap (and load). Already the comparison of mean values of inertia forces results in the same 
conclusions that were formulated above for the acceleration coefficients and the probability of exceeding 
the prescribed limits (see Table 2). Table 2 is also completed with theoretical inertia values in the 
respective axes using normatively determined acceleration coefficients (Fxn, Fyn). 

Table 2. Arithmetic means of absolute values of acceleration coefficients and inertia forces at d1, d2 
 Arithmetic means of absolute values 
 Acceleration coefficients [–] Inertia forces [N] 
 cxi cyi czi Fxi Fyi Fxn Fyn 

d1 0.6012 0.6396 1.6381* 30,363 19,820 17,989 12,265 
d2 0.9155 0.9994 2.0047* 43,441 40,455 17,989 12,265 

* The measuring device should shift the coordinate axis of the z-axis by 1g. 
 

Table 2 shows that the values of acceleration coefficients on average exceed the normative limits 
according to EN 12195-1:2010 in 4 cases (cy1, cx2, cy2, cz2). The calculated values of inertia forces then 
exceeded the theoretical inertia values ( Fxn, Fyn) in all cases, even twice in dataset 2. At first sight, the 
correlation of the inertia forces with the applied acceleration coefficients, which are part of the 
calculation, is evident (it will be verified algebraically using the appropriate correlation coefficients). 
Depending on the model and values used (eg. vertical lashing angle or friction factor), the resulting 
inertia forces may exceed the theoretical inertia forces even more than twice. 

3.3. Correlation between acceleration coefficients and inertia forces 
In the logistics and transport practice, drivers and loading groups cannot be expected to have sufficient 
knowledge of impact of inertia forces. The advantage here is the use of support software applications, 
which allow significant simplification for users. However, the drawback of these software supports is 
the lack of knowledge of the algorithms by which the vehicle is loaded, or the load secured. As another 
drawback we can consider the “non-standard” loading, i.e. the fixing of a specific load or the fixing of 
a load for transportation under“non-standard” conditions (eg. lower-quality roads). For the sake of 
simplicity, with the assumption of applying the article outputs in practice, it is only possible under 
certain assumptions to use the outputs from accelerometers (acceleration coefficient values). The basic 
requirement is to ensure cargo securing with the knowledge of the shocks (acceleration coefficients). 
Thus, a strong correlation is required between the respective acceleration coefficients and the calculated 
inertia values, which act on the load or the entire fastening system. The results of the calculated 
correlation coefficients are summarized in Tables 3 and 4. 

Table 3. Correlation tests between acceleration coefficients and inertia forces (x-axis) 
 cxi 
 ρ W 
Fx1 0,9825 0,9002 
Fx2 0,9939 0,9381 
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Table 4. Correlation tests between acceleration coefficients and inertia forces (y-axis) 
 cyi 
 ρ W 
Fy1 0,9875 0,9181 
Fy2 0,9911 0,9307 

 
Tables 3 and 4 show a very strong correlation between the magnitude of the respective acceleration 

coefficient and the value of inertia in a given axis. All coefficients used have values above 0.90 for both 
axes and both datasets. In the case of Spearman's correlation coefficient (ρ), the value is not less than 
0.98 in either case. 

4.  Conclusions 
The presented transport experiments show the importance of taking into account the type of transport 
route (not only the road but also the terrain) for cargo securing purposes. Especially in the case of lower-
class roads, it is generally assumed that large shocks will occur despite a significantly lower transport 
speed. The use of EN 12195-1:2010 is not appropriate in general, which can be demonstrated 
experimentally, especially under off-road conditions [11, 12]. Failure to take into account the 
aforementioned specifics may result in the release of cargo, which may lead to a traffic accident, loss of 
property, and the lives or health of people [13]. 

The methodological approach used in the article makes it possible to easily and quickly take into 
account the empirically obtained values of shocks for other transports. Especially for transport 
companies that use a large fleet of vehicles and carry cargo on the same or similar routes, this approach 
can be considered beneficial. In addition, for transports that are specific (eg type of road, vehicle, cargo), 
this can significantly increase the safety of such shipments. For practical use, evaluation of past 
shipments can only be based on experimentally measured data (acceleration coefficient values) if the 
transport parameters are similar, as evidenced by the high correlation coefficients used. More 
complicated work with inertia forces is not necessary and therefore a worker with only basic cargo 
securing knowledge (driver, loading team worker, etc.) can enter the process. 

The subject of further research will be the concept of basal vectors of acceleration coefficients for 
selected types of transport routes, which would be a guide for the choice of the fastening method. For 
lower-quality routes, the inclusion of the basal acceleration coefficient vector in determining 
(calculating) the required lashing capacity of the respective fastener would be crucial. Furthermore, it is 
possible to continue in the statistical analysis using advanced statistical methods, see [14, 15] and their 
application on data on the vehicle load during its transportation using the software and program products. 
The subject of the research is also the application of a different approach to data using spectral analysis 
[16], i.e. investigation of signal frequencies, not shocks per time unit. 
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