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Abstract. This paper deals with the standard capacitated location-routing problem (CLRP), 

where two types of interdependent decisions must be made: which facilities among a number of 

potential ones should be operated and which vehicle routes should be built to fulfil the demand 

of customers from the operated facilities using a given fleet. We propose a heuristic mechanism 

to address the problem. The algorithm consists of four stages, namely optimally clustering 

customers by �-means and assessed by Dunn index, selecting the nearest depot to be opened 

based on Euclidean distance calculation, customers-to-depot matching and searching the optimal 

distribution route. This heuristic algorithm is then implemented to a dataset comprises of 20 

customers and 5 potential depot facility locations. 

1. Introduction 

The Vehicle Routing Problems (VRP) is a terminology which refers to a problem of searching routes 

for a fleet of vehicles of known capacities to service a number of customers with known locations and 

known demands for a certain commodity, given a set of constraints, possibly integrated with production 

scheduling [1]. While, Facility Location Problems (FLP) concerns with selecting the placement of a 

facility (often from a list of integer alternatives) to minimize transportation costs and to best meet the 

demanded constraints [2]. If VRP and FLP are mutually considered then we have the so-called location-

routing problems (LRP). In fact, classical LRP integrates the two kinds of decisions, namely opening a 

subset of depots, assigning customers to them and determining vehicle routes, to minimize a total cost 

including the cost of open depots, the fixed costs of vehicles used, and the total cost of the routes [3]. 
Both exact and heuristic approaches can be employed in solving LRP. 

Book chapter by Marinakis [4] provides the concise reference for the basic notion of LRP that 

includes the model and its variants as well as the solution method. While, book by Drezner and 
Hamacher [2] offers more comprehensive review. Prodhon and Prins [3] analyzes the recent literatures 

on the standard LRP and new extensions such as several distribution echelons, multiple objectives or 

uncertain data, including results of state-of-the-art metaheuristics method. A more recent survey paper 
on standard LRP is given by Schneider and Drexl [5] as it provides concise paper excerpts that convey 

the central ideas of each work, discuss recent developments in the field, provide a numerical comparison 

of the most successful heuristic algorithms, and list promising topics for further research. Farahani et al. 

[6] delivers a review on recent efforts and development in multi-criteria location problems in three 

categories including bi-objective, multi-objective and multi-attribute problems and their solution 

methods. 

Throughout the paper, the following main characteristics are adopted [3]: 
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� All relevant data are deterministic, i.e., are fully known in advance. 

� There is only one planning period, i.e., a static planning situation. 

� The number of potential locations for facilities is finite. 

� There is only one single, scalar objective function. 

� Each customer has a known demand that must be fulfilled by a delivery from exactly one of the 

potential facilities; there is no load transfers at intermediate locations allowed. 

� Each customer must be visited exactly once by one vehicle. 

� No inventory considerations apply, neither at facilities nor at customers. 

 

2. Review on solution approach 
From the perspective of solution method, a number of efficient algorithms and approaches have been 

introduced for addressing LRP, stimulated by the fact that it is an NP-hard combinatorial optimization 

problem that can be exactly solved only for limited instances of the problem. Belenguer et al. [7] is one 
proposing an exact approach based on branch-and-cut method to solve CLRP. While Tuzun and Burke 

[8] proposed a heuristic method based on two-phase tabu search. In the first phase, the best composition 

of opening depot was sought following by vehicle routing in the second phase. Prins et al. [9] utilized a 

greedy randomized adaptive search procedures (GRASP) equipped by learning process to decide depots 

should be opened and path relinking for routing. Prins et al. [10] suggested a solving approach by using 

lagrangean relaxation and granular tabu search. In the same effort, Duhamel et al. [11] also utilized 

GRASP and evolutionary local search (ESL) to solve the problem. Barreto et al. [12] proposed a 

clustering based analysis to address CLRP. Other heuristic approaches include the use of ant colony 

optimization [13, 14], hybrid genetic algorithm [15] and particle swarm optimization [16]. 
 

3. Method 

In this work we consider the capacitated location-routing problem (CLRP), the most basic and general 
variant of LRP by adding capacity constraint on both depots and vehicles. We formulate the problem in 

term of mixed integer linear programming (MILP) and approaches heuristically by �-means clustering 

for grouping customers. Dunn index is measured to determine the optimal number of clusters. Our 

procedure consists of four stages: optimally clustering customers by �-means, selecting the best depot, 

allocating customers to selected depot, and searching the optimal distribution route. 

 

3.1. Dataset 

For algorithm testing, we consider a hypothetical dataset presented in [10]. The dataset consists of 20 

customers with known level of demand and 5 candidates of facility with homogeneous capacity of 140 
units. The scatter plot of nodes for dataset is provided in Figure 1. In this plot, black diamonds denote 

the customers and squares represent the potential locations of facilities. 

 
3.2. Customers clustering 

Clustering of customers is the first step of our heuristic algorithm. We employ the well-known �-means 

clustering for grouping customers with 2 ≤ � ≤ ⌈�/4⌉, where � is the number of customers. The best 

number of clusters � is determined by means of Dunn index. Let � = {��, �	, … , �
} be a set of clusters, 

let �: � × � → ℝ� be a cluster-to-cluster distance measure and let Δ: � → ℝ� be a cluster diameter 

measure. The Dunn index �� for the set � is defined as [18]: 
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Figure 1. The location of customers and potential locations of facilities in the third dataset 

 

��(�) =
min��� {�(��, ��)}

max����
{∆(��)} , (1) 

where �(��, ��) = min�∈��,�∈��
{�(�,  )} and ∆(��) = max�,�∈�!

{�(�,  )} with �: � × � → ℝ� is object-to-

object distance measure like Manhattan distance or Euclidean distance. For a given assignment of 
clusters, a higher Dunn index indicates better clustering. The process of customers clustering is required 

to decide the number of depots should be operated. 

 
3.3. Selecting the depot facilities 

The mechanism for selecting the best depot facilities relies on the calculation of Euclidean distance 

between centroid of cluster and depot facility. Let ("�, #�) denotes the centroid of cluster �� and ($�, %�) 

denotes the location of (potential) depot facility &, then the depot facility & will be operated as long as its 

total distance �� is minimum: 

�� = min����' * +-$� − "�.	 + -%� − #�.	



�1�
, (2) 

where 3 is the number of (potential) depot facilities. If the total demand of all customers cannot be 

supplied by depot &, then the second best depot, i.e., depot facility with the next minimum total distance, 
should be opened. The process of opening next depots is continued until the total demand satisfied. 

 

3.4. Customer-to-depot allocation 

Customer-to-depot assignment is undertaken by measuring the Euclidean distance of each customer to 

each selected depot. A number of customers with minimum distance are then assigned to the nearest 

selected depot. The process of matching is continued until all customers assigned to depots. In this 

process, a customer reallocation might be needed regarding the capacity reachability of each selected 

depot. 
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3.5. Vehicle routing 

The last step of the algorithm is searching the best routes from depot to customers for delivering 

products. A fleet of vehicles, each with known and fixed capacity, starts at a designated depot and returns 
to the same depot after visiting customers where service or product is demanded. The objective is either 

to minimize the total distance of all the routes or total cost. 

Since the customers demand fulfilment by depot is guaranteed in the previous step, then in this paper 
we consider the most standard capacitated VRP. We here assume that a fleet of vehicles with known 

loading capacity is always available in each depot to deliver products. One may refer to Toth and Vigo 

[17] for a comprehensive account on this topic. 

Suppose ℂ denotes the set of all customers and 6 denotes the set of all vehicles available in the depot. 

If the number of customers is �, and thus ℂ = {1,2, … , �}, then the set of all nodes, i.e., depot and 

customers, is denoted by ℕ = {0} ∪ ℂ = {0,1,2, … , �}, where 0 is index for the only depot. The 

following parameters are used: <��  is the traveling cost between node > and &, ? and @ are capacities of 

depot and vehicle, respectively, and �� is the demand level of customer &. For decision variable, ���
 =
1 if vehicle � travel from node > to node &, ���
 = 0 otherwise. VRP can be formulated such that the 

following total cost is minimized: 

min���A
B ≔ * * * <�����



∈6�∈ℕ�∈ℕ
, (3) 

subject to the constraints 

* * ���


∈6�∈ℕ

= 1, ∀& ∈ ℂ, (4) 

* * ���


∈6�∈ℕ

= 1, ∀> ∈ ℂ, (5) 

* * �����

�∈ℕ�∈ℂ

≤ @, ∀� ∈ 6, (6) 

* �� ≤  ?,
�∈ℂ

 (7) 

* ���

�∈ℂ

−  * ���

�∈ℂ

= 0,          ∀> ∈ ℕ, ∀� ∈ 6, (8) 

* �F�

�∈ℂ

≤ 1, ∀� ∈ 6, (9) 

* * ���

�∈G�∈G

≤ |G| − 1, ∀G ⊆ ℂ, ∀� ∈ 6. (10) 

Constraints (4) and (5) ensure each customer is visited and exited once. Constraint (6) guarantees that 

the total delivered product is not exceeding the capacity of vehicle. While condition (7) requires the total 

demand of all customers is not exceeding the capacity of the depot. Constraint (8) enforces the route 

continuity, meaning that as soon as a vehicle reaches a customer to deliver products, it should leave that 

place at once. The requirement that all trips must be started at depot is given by (9), while (10) eliminates 

sub-tour. 

 

4. Results and discussion 

We implement our formulation and algorithm to a dataset that consists of 20 customers and 5 depot 

candidates. It is assumed that the amount of products demanded by customers vary but the capacity of 
depots are homogeneous. Each depot has a sufficient number of vehicles to deliver the products, 

however the loading capacity of vehicles are assumed to be the same, which is 70 unit/vehicle. Table 1 
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provides the location of all nodes as well as their demand or capacity levels, while Figure 1 depicts the 

scatter plot. 

Based on �-means clustering analysis on customers location as well as their respecting Dunn index, 
it is suggested that customers can be best clustered into four clusters as indicated by its highest Dunn 

index (see Table 2). Under this 4-group clustering, it is known that clusters �� and �J consist of 7 

customers, cluster �	 has 4 customers and cluster �K has only 2 members (see Table 3). 

 

Table 1. Nodes location, demand and capacity 

Node 
Coordinate Demand 

(Capacity) �   

Customer 1 20 35 17 

Customer 2 8 31 18 

Customer 3 29 43 13 

Customer 4 18 39 19 

Customer 5 19 47 12 

Customer 6 31 24 18 

Customer 7 38 50 13 

Customer 8 33 21 13 

Customer 9 2 27 17 

Customer 10 1 12 20 

Customer 11 26 20 16 

Customer 12 20 33 18 

Customer 13 15 46 15 

Customer 14 20 26 11 

Customer 15 17 19 18 

Customer 16 15 12 16 

Customer 17 5 30 15 

Customer 18 13 40 15 

Customer 19 38 5 15 

Customer 20 9 40 16 

Total   315 
Depot 1 6 7 140 

Depot 2 19 44 140 

Depot 3 37 23 140 

Depot 4 35 6 140 

Depot 5 5 8 140 

Total   700 
 

 

Table 2. Dunn index 

Number of clusters 2 3 4 5 

Dunn index 0.166 0.155 0.253 0.181 
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Table 3. Result of 4-group clustering 

Cluster 
Centroid 

Customer �   

�� 16.286 40 1, 4, 5, 12, 13, 18, 20 

�	 4 25 2, 9, 10, 17 

�J 25.714 18.143 6, 8, 11, 14, 15, 16, 19 

�K 33.500 46.500 3, 7 

 
Table 4. Distance between centroid and depot 

Cluster Depot 1 Depot 2 Depot 3 Depot 4 Depot 5 
�� 34.566 4.834 26.797 38.810 33.931 

�	 18.111 24.207 33.060 36.359 17.029 

�J 22.645 26.715 12.286 15.286 23.064 

�K 48.130 14.714 23.759 40.528 47.901 

Total 123.452 70.470 95.903 130.984 121.926 

 

Table 4 provides the distance between centroid of each cluster and depot candidates. Depot 2 has the 

smallest total distance of 70.470. Thus, Depot 2 with capacity 140 units is selected for opening. 

However, according to Table 1 the total demand is 315 units. It means that in addition to Depot 2, 

operating two more depot is required such that the total capacity of depots is 420 units. Depots 3 and 5 

which have the next smallest total distances should be opened. Table 5 gives the distance between each 
customer and Depot 2, 3 and 5, from which we can decide the customer-depot matching based on the 

smallest distance. At this stage, the total demand for Depot 2 is 171 units, which is exceeding its 

capacity. While those for Depots 3 and 5 are 73 and 71 units, respectively. It is imperative to reallocate 
a few number of customers of Depot 2 to either Depot 3 or Depot 5. The last two columns of Table 5 

calculates additional distance incurred by customer reallocation from Depot 2 to Depots 3 and 5. Thus, 

it is suggested to reallocate Customers 17 and 2 to Depot 5, respectively. Consequently, total demand 

should be fulfilled by Depot 2 becomes 171 − 15 − 18 = 138 units and total demand for Depot 5 

becomes 71 + 15 + 18 = 104 units. 

Figure 2 illustrates the solution of VRP over 3 depots and 20 customers. It is known that Depot 2 

should dispatch 3 vehicles to deliver products to 9 customers with total distance of 88.991, Depot 3 uses 

2 vehicles to serve 5 customers with total distance of 71.930 and Depot 5 operates 2 vehicles to visit 6 

customers with total distance of 85.619. In Figure 2, red squares indicate the selected depots. 
 

5. Conclusion 

A heuristic algorithm based on �-means clustering and Euclidean distance has been introduced to 
approach the CLRP. The algorithm comprises of customers clustering assessed by Dunn index, selecting 

the depot to be operated among a number of potential facilities, customer-depot matching and vehicle 

routing. The algorithm has successfully been implemented to a dataset consists of 20 customers and 5 

potential depot facilities. 

Future research direction in this area includes the application of hierarchical methods and use of route 

length formulae; extension to dynamic and stochastic problems; development of integrated methods in 

logistics, e.g., solving the location-routing-inventory and the location-routing-packing problems; and 

multiple objective LRP. 
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Table 5. Customer-depot matching 

Customer 
Distance Assigned 

Depot 
Total 

Demand 

Additional distance due to 
reallocation 

Depot 2 Depot 3 Depot 5 Depot 3 Depot 5 
1 9.055 20.809 30.887 2  11.753 21.831 

2 17.029 30.083 23.195 2  13.054 6.165 

3 10.050 21.541 42.438 2  11.491 32.388 

4 5.099 24.840 33.615 2  19.740 28.516 

5 3 30 41.437 2  27 38.437 

7 19.925 27.018 53.413 2 171 7.094 33.489 

12 11.045 19.723 29.155 2  8.678 18.109 

13 4.472 31.828 39.294 2  27.355 34.822 

17 19.799 32.757 22 2  12.958 2.201 

18 7.211 29.411 32.985 2  22.200 25.774 

20 10.770 32.757 32.249 2  21.986 21.479 

6 23.324 6.083 30.529 3    

8 26.926 4.472 30.871 3    

11 25 11.402 24.187 3 73   

14 18.028 17.262 23.431 3    

19 43.382 18.028 33.136 3    

9 24.042 35.228 19.235 5    

10 36.715 37.643 5.657 5 71   

15 25.080 20.396 16.279 5    

16 32.249 24.597 10.770 5    

 

 

Figure 2. The optimal routes. 
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