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Abstract. The present work provides an economic feasibility and annual performance of 

integrated linear Fresnel reflector gas turbine trigeneration power plant (LFR-GTPP) that is 

progressively being installed to produce electricity, steam and chilled water. In order to pinpoint 

the best integration mode, different sizes of gas turbine and solar collector’s area have been 

examined and presented. Thermoflow software was used for evaluating the performance of each 

integrated design under consideration. The optimal solar integration sizes have been determined. 

Moreover, reduction in CO2 emissions due to integrating the LFR system is estimated with 

respect to that of the conventional trigeneration plant. For the considered trigeneration plant (that 

is required to produce 120.5 MW of steam, and 2500kg/s of chilled water), the study revealed 

that LFR-GTPP with gas turbine sizes less than 190 MWe capacities have more economic 

feasibility and sufficient ability for utilizing solar energy. The levelized electricity cost (LEC) 

for the (LFR-GTPP) varied between 4.28 USȼ and 5.6 USȼ/ kWh. Furthermore, the study 

revealed that integrating LFR system with a conventional gas turbine trigeneration power plant 

in Sun Belt regions leads to a considerable avoidance in CO₂ emissions compared to the 

conventional trigeneration plant.  

Keywords: Gas turbine trigeneration power plant; solar thermal power plants; integrating linear 

Fresnel reflector; thermo-economic analysis. 

1. Introduction 

A Linear Fresnel Reflector (LFR) based concentrating solar power technology power plant has been 

considered as one of the most promising technologies for utilizing solar energy. A 100MW solar thermal 

power plant powered by a LFR system with thermal energy storage was evaluated by Bishoyi and 

Sudhakar [1]. Mokhtar et al.[2] preformed the thermal performance analysis of a solar water heating 

system based on LFR technology. Bachelier and Stieglitz [3] presented optimisation analyses in terms 

of LEC of several designs and configurations for direct molten salt technology plants based on the LFR 

system. The performance of an integrated gas turbine cogeneration power plant based on LFR 

technology was investigated using Thermoflow simulation software by Dabwan and Mokheimer [4]. 

Trigeneration for electricity, heating and cooling production systems integrated with solar energy 

resources have been investigated in some previous studies. For example, Wang and Yang [5] presented 

a hybrid-thermal power strategy of a trigeneration system driven by natural gas and solar energy. The 

system was used to produce electricity, space cooling/heating and domestic hot water. Tora and El-

Halwagi [6] developed a systematic procedure for energy saving through the integration design of a 

trigeneration system powered by natural gas and solar energy. Al-Sulaiman, et al.[7, 8] performed a 

thermodynamic analysis of trigeneration power plant powered by parabolic trough collector (PTC) 

system with thermal energy storage. In another work, Zhai, Dai [9] evaluated annual energetic and 

exergtic efficiencies of a hybrid solar trigeneration system integrated with PTC system under Beijing 
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weather data (China). Zhang, Li [10] analyzed a solar-biomass hybrid trigeneration power plant for 

producing chilled water, hot water and electricity. In another work, Baghernejad, et al.[11] compared 

three trigeneration systems in terms of multi objective optimization parameters. Meng, Yang [12] 

proposed a trigeneratgion system driven by industrial waste heat and solar energy. The performance of 

the system was theoretically evaluated. Yao, Wang [13] proposed a new trigeneration cycle based on 

compressed air energy storage system. The system was evaluated in terms of energy, exergy and 

exergoeconomic performance. It is obvious from the literature that the application of LFR system in the 

trigeneration power plant for steam, chilled water and electricity generation has been rarely investigated. 

In addition, most of the previous research works deal with the application of PTC system for 

co/trigeneration power plants. Thus, this paper presents the investigation of possible design 

modifications required for integrating LFR to a conventional trigeneration plant for the optimal 

operation under Al-Hodeidah weather conditions, Yemen.  

2. Problem statement and system description 

In order to perform thermo-economic analyses for an integrated LFR gas turbine trigeneration power 

plant (LFR-GTPP), a conventional gas turbine trigeneration power plants (GTPP) was considered as a 

reference cycle in this study. The reference plant used to produce 340MWe of electricity (250 MWe at 

gas turbine + 90MWe at steam turbine), 120.5MW of industrial process steam, and 2500 kg/s of chilled 

water (24440 tons). In this regard, several simulations have been conducted to assess the performance 

of the plant with different gas turbine sizes and to determine the optimal size of the LFR solar fields that 

can be integrated with each gas turbine size. The schematic diagram of an integrated solar gas turbine 

trigeneration plant considered (LFR-GTPP) is presented in Figure 1. The schematic diagram of the 

conventional gas turbine trigeneration plant (GTPP) is similar to the plant in the Figure 1, but without 

solar integration. Thermoflow software [14] has been used to simulate both configurations (GTPP and 

LFR-GTPP). The objective of the current study is to investigate the possible different designs of the 

conventional and integrated solar gas turbine trigeneration plants for optimal operation for a constant 

plant steam side load (electrical, thermal and cooling load). In this regard, different gas turbine sizes for 

the trigeneration plants described above have been investigated. 

 
Figure 1:  Schematic diagram of an integrated solar gas turbine trigeneration power plant based on LFR as 

simulated in Thermoflow. 
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The plants are originally designed to give the required electricity (at stream turbines), industrial process 

steam and chilled water at the required conditions for the large gas turbine size of 250 MWe. Therefore, 

for gas turbine sizes smaller than 250 MWe, the required plant steam side load was provided by the LFR 

system and/or a duct burners. The duct burners are installed in the HRSG to keep the same amount of 

steam at the same conditions produced when the solar generator is unavailable. 

3. Performance parameters  

Several thermo-economic parameters were used for evaluating the considered power plants.  

Solar multiple is the ratio of the produced thermal power by the LFR system to the total thermal power 

produced by HRSG (equal to 391.9 MW) [15-17]. 

,

,

Pth solar
SM

Pth total
=

                                                                                              (1) 

Instantaneous solar share can be estimated by the ratio between the power generated by the LFR 

system and the total power generated by both of fuel and solar energy input at the design hour, [16-19].  

*
, , ,
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Annual solar share can be estimated by the ratio between the energy generated annually by the solar 

energy input and the total energy generated annually by the solar energy and fuel input [16-19].  
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Incremental CO₂ avoidance is the annual reduction of CO₂ emissions due to integrating LFR 

technology [16, 17, 19], and it is defined as: 
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Where, CO2 LFR-GTPP is annual CO₂ emissions from the LFR-GTPP, CO2 GTPP,ref is annual CO₂ 

emissions from the GTPP; and fCO2 is the amount of CO2 emissions per fuel’s heating rate [20].  

Levelized energy cost (LEC) can be estimated by the ratio between the total annual cost in USD$ 

and the total annual energy produced by the power plant. In a trigeneration power plant, the LEC of 

electricity can be estimated by subtracting the total annual price of steam and chilled as per their common 

local market price, as follows: 

*  
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Where, Eel,ann is annual total electric power (KWh), Itot is total investment cost; Fann is annual cost of 

fuel; OMann is annual cost of maintenance and operation; and fcr is annuity factor; where Kd is the interest 

rate, Kinsurance is the annual insurance rate,  and n is the depreciation period in years. 

In current study, the steam and chilled water price have been assumed to be of 20% and 33% higher 

than that of the respective fuel price, respectively. 

Solar levelized energy cost is used to assess the feasibility of integrating LFR technology to the power 

plant.     
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−
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                                                                                                (6) 

4. Results and discussion 

The simulation results of the present study are basis to figure out the optimal LFR field size that can be 

integrated to a trigeneration plant with different gas turbine sizes to cover the fixed plant steam side load. 

Figure 2 shows solar multiples for different areas of LFR solar field. The produced thermal powers by 

the integrated LFR gas turbine trigeneration power plant (LFR-GTPP) with different integration sizes is 
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plotted in Figure 3.The results show that the obtained thermal power from solar system increases with 

LFR field area (solar multiple) till it reaches a maximum point for each capacity of the gas turbine. After 

that, it remains constant. This is due to the solar field over sizing, which means that the LFR field would 

be operated at part load after that point. The maximum thermal power required from the LFR system 

takes place when the burned fuel at the duct burners is extremely-small during the daytime. That means 

there is no room for integrating LFR technology after these specified points; this is because the thermal 

content in gas turbine exhaust gasses is enough for producing electricity, steam and chilled water at the 

plant steam side.  

 

 

 

Figure 2. Solar multiples versus areas of the LFR 

field 

 Figure 3. Obtained thermal power from the LFR field versus 

the solar multiple. 

Figure 4 shows the variation in the instantaneous solar shear of the proposed plant (LFR-GTPP) for 

different values of gas turbine size and solar multiple. From the results, it is clear that an increase in the 

soar multiple consequently increase the instantaneous solar shear for each gas turbine size. The 

instantaneous solar shear reaches a maximum value for each gas turbine size. Beyond that, it remains 

constant. This is attributed to the area of LFR field, which is not fully used beyond that maximum value 

as mentioned earlier. The annual solar shear (the annual percent) of the energy produced by the LFR-

GTPP due to solar integration has been plotted in Figure 5. According to the Fig, the plant with large 

gas turbine size, 250MWe, does not required much energy from the solar integration (about 4%). 

whereas, the plant with small gas turbine capacity, 100 MWe, has a small instantaneous solar shear value 

(about 12.2%).  

 

 

 

Figure 4.  instantaneous solar share  Figure 5. Annual solar share 

The economic evaluation of the proposed power plants has been carried out by using LEC and solar 

SLEC. Figure 6 shows the LEC of the LFR-GTPP with different sizes of the solar field and gas turbine. 

As shown, the LEC of the plant with different gas turbine sizes slightly increased when solar multiple 

increases. Figure 7 shows how the SLEC of the plant with different gas turbine sizes vary in response 
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to rise in solar multiple. From the Figure, it can be observed that SLEC reaches a minimum value for 

each gas turbine size. Beyond that, it increases. This is due to the over sizing of the LFR area, which is 

not usable after that value. The optimal solar integration occurs when the burned fuel at the duct firings 

is extremely small during the daytime. It implies that after the minimal value of SLEC, there is no room 

for integrating LFR system, where the recovered energy in the HRSG is enough for producing 

electricity, chilled water and steam. Optimum solar integration sizes (solar multiples) were determined 

at the minimum values of SLEC (Figure 7), which are 0.5, 0.5, 0.45, 0.40, 0.25, and 0.25 for gas turbine 

capacities 100, 130, 160, 190, 220, and 250 MWe respectively. Figure 8 presents LEC of both 

configurations of the GTPP and the LFR-GTPP with different gas turbine sizes. The results indicate that 

solar integration with trigeneration plant results in a minor increase in the LEC compared to that of the 

conventional trigeneration plant. This is because the simulation site is located in a high solar radiation 

level in a Sun Belt country (Yemen), which makes a specific size of LFR system producing maximum 

possible thermal energy. Since the solar integration of LFR to the trigeneration plant leads to a negligible 

increment in the LEC, it results in a significant avoidance in emissions of CO₂. Therefore, LFR-GTPP 

could be represented as a promotion solution to the environmental problems caused by emissions of 

CO2. Figure 9 presents the annual CO₂ avoidance, which is the annual reduction of CO₂ emissions due 

to integrating LFR system. As shown, the maximum avoidance of the annual CO₂ emission takes place 

when the LFR integrated to 100 MWe gas turbine (110.34 k-tonne of CO₂), and this avoidance decreases 

while gas turbine capacity increases until it reaches 45 k-tonne of CO₂ at 250 MWe gas turbine capacity. 

 

 

 
Figure 6. LEC for different integration sizes   Figure 7.  SLEC different integration sizes 

 

 

 
Figure 8. LEC for both configurations of GTPP and 

LFR-GTPP (at optimal integration). 

 Figure 9. Annual CO₂ avoidance for utilizing LFR 

technology in the trigeneration power plant.  

 

5. Conclusions 

Solar energy is the most abundant source of energy on the earth and introducing integrated LFR with 

gas turbine trigeneration power plants offers stable and clean power plant for producing electricity, 

industrial process steam and chilled water. The annual and instantaneous solar shares as well as the 
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annual reduction in CO₂ emissions are higher when the LFR technology integrated to the gas turbine 

trigeneration power plant with small gas turbine generation sizes (less than 190 MWe). Moreover, 

integrating LFR technology with a conventional gas turbine trigeneration power plant results in a minor 

increase in LEC compared to the conventional trigeneration plant. The LEC for the integrated plant 

varied between 4.28 USȼ and 5.6 USȼ/ kWh, while this integration leads to a considerable reduction in 

CO₂ emissions compared to the conventional trigeneration plant. 
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