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Abstract. Compound parabolic concentrator (CPC) as a typical low-concentration-ratio 

concentrator is an interesting topic for it can work as the static concentrator without any 

additional tracking systems or seasonal adjustments, which shows a promising concept of 

introducing the concentrating PV technology for building application. Therefore, based on the 

compound parabolic curves, a novel asymmetric compound parabolic concentrator (ACPC) is 

proposed in this paper for building south wall integration. The optical model of the ACPC is 

built by the software Lighttools to study its optical performance, and the structure parameters 

of it are optimized through the optical simulation. Then the prototype of the ACPC integrated 

with the PV cell as the ACPC-PV module is manufactured and assembled. The indoor 

experiments by the solar simulator (Oriel Sol3A Model 90943A) from the Newport 

Corporation at the dark environment with the temperature of 25 °C are conducted to study the 

electrical performance of the ACPC-PV module. The simulation and experiment results show 

that the acceptance range of the ACPC with the geometric concentration ratio of 2.4X can be 

65° with high optical efficiency. A good agreement is observed between the simulation and 

experiment results despite the deviation of around 13% which is inevitable due to all kinds of 

errors, such as manufacturing errors, mismatch losses, series resistance losses, etc. 

Keywords: Asymmetric; Compound parabolic concentrator; Concentrating photovoltaic; 

Optical performance; Electrical performance 

1. Introduction 

With the rapid development of the society and the vast consumption of the fossil fuels, the 

environmental problems are becoming more and more serious. It has been stated that the world energy 

consumption will soar into 750 million kilowatts in 2020 which would be 50–80% higher than 1990 

levels and the energy consumption in buildings has been steadily increasing and contributing up to 

more than 40% of the total energy use in developed countries. For developing countries, the share of 

building energy consumption is less, but, as the growth of population, urbanization, and demands of 

building services and comfort levels, the sharp rise of building energy use is probably inevitable [1]. A 

useful measure to reduce building energy use is integrating solar energy technologies with building 

envelopes such as Building integrated photovoltaic (BIPV) or building attached photovoltaic (BAPV) 

systems [2]. 

It was predicted by the International Energy Agency (IEA) that building integrated solar PV 

technology which is considered during the design and construction of all types of buildings would be a 

future potential [3]. As it is revealed by a report conducted by IEA about the prospect of the building 

integrated PV systems (BIPV) in fourteen selected countries, a total potential BIPV area is around 23 

billion m2 which is able to generate about the electricity of 3 pWh annually [4]. It was concluded by 
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Oliver and Jackson that compared with the centralized PV plant, BIPV systems possess three main 

benefits [5]: 

(1) The need of the land, fence, access road and other important support components can be 

avoided, for the PV panels are attached or replacing the building structure. The most 

buildings are close to the electricity grid which means that some cabling cost can also be 

avoided.   

(2) When the electricity is generated by the BIPV systems, it will be consumed by buildings 

themselves, therefore the losses that caused by the transmission and distribution of the 

electricity can be minimized. As for the commercial buildings, their electricity demands 

coincide with the peak electricity generation from BIPV systems. 

(3) The overall cost of the BIPV system can be further reduced due to the substitution parts of 

the building roof, window and façade.  

In the recent years, researchers have realized the advantages of introducing the concentrating PV 

(CPV) into the BIPV systems as BICPV (Building Integrated Concentrating Photovoltaic), so the use 

of the concentrators have significantly increased in the last decades, such as sky lights, double glazing 

windows and solar blinds [6, 7]. The concentrator is a device usually makes use of geometrical optics 

in the design of reflective and/ or refractive types of concentrating devices to focus the solar flux onto 

a receiver module where the PV cell is attached [3]. In this area, the compound parabolic concentrator 

(CPC) is proved to be a more utility and economic concentrator [8]. 

Since the concept of the CPV proposed for the BIPV systems, there are a lot of researchers have 

committed themselves in designing and integrating solar concentrators with buildings. Carlo Renno et 

al designed a concentration PV thermal system that was able to provide the electricity for the domestic 

use and recover the solar cell thermal energy to both supply heat for domestic application and enhance 

the performance of the solar cell [9]. Mallick et al designed a novel asymmetric CPC which consists of 

two different parabolas, and the simulation and experiment results showed that it is a feasible way to 

integrate it with building façade at Northern Ireland (54°36’N, 5°37’W) and the experiments revealed 

that the asymmetric mirror CPC (with geometric concentration ratio of 2.0X) increased the PV power 

by 62% and a maximum power ratio of 2.01 was observed for a dielectric asymmetric CPC (with 

geometric concentration ratio of 2.45X) [10, 11].  

It has been proved by Xuan et al. [12] and Li et al. [13] that asymmetric compound parabolic 

concentrator shows the promising concept of introducing the BICPV systems for building south wall 

integration. Based on the lens-walled structure, a novel asymmetric compound concentrator (ACPC) 

by adopting the rotation angle for the reflection lens-walled structure to increase the overall 

acceptance range is proposed in the paper. An optical model is built for the ACPC by the software 

Lighttools. The indoor experiments are conducted to study the optical and electrical performance of 

the ACPC-PV.     

2. The geometric structure of the asymmetric compound parabolic concentrator (ACPC) 

The lens structure of the asymmetric compound parabolic concentrator is shown in Fig.1, which 

consists of the asymmetric compound parabolic curves AB and CD. The equations of AB and CD are 

expressed in Eqn. (1) and (2). In order to increase the energy collection for the asymmetric 

concentrator by enlarging the front aperture, the parabolic curve AB is rotated by the lower end point B 

for a certain degree of 15°, then the curves of the A B andCD will be the outer contour of the ACPC. 

Finally, A B andCD are rotated by the up end points AandC with the specific angle (usually 3-5°) to 

form the lens-walled structure for the ACPC. Considering the machining precision, the upper part of 

the ACPC are truncated at EF and GH to make it easier to manufacture. The geometric concentration 

ratio of the ACPC is 2.4X, according to the equation: /EH BD , the distance between B D  and BD is 

the base height of the ACPC.      

( )
21

0.4 0.917 5.007 0.917 0.4 4.585 5 6
28

x y x y x− + + = + +                           (1)                            

21
0.830 0.550 4.980 (0.55 0.83 2.756) 5 12.5

36.67
x y x y x− + + = + +                 (2)         
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According to Snell's law, the lens-walled structure of the ACPC can make use of the total internal 

reflection to collect sun rays. For this reason, the solar energy usage ratio can be increased obviously. 

Thus the lens-walled structure can achieve the same function as the dielectric compound parabolic 

concentrator but less material needed. However, due to the restriction of the incidence angle, not every 

sun ray can be collected through the total internal reflection, which will escape the concentrator. In 

order to collect the escape sun rays, an asymmetric mirror CPC is also integrated with the lens-walled 

structure to form as the ACPC, the geometric figure of which is shown in Fig. 2. In this way, the sun 

rays at various incidence angles can be collected through either the total internal reflection or the 

specular reflection.     

  
Figure 1 Formation process diagram of the lens-

walled structure. 

Figure 2 The structure of the ACPC. 

3. Ray-tracing simulation and experimental investigation 

The model of the ACPC is first designed in the SolidWorks and then transferred into Lighttools 

for the optical simulation. The optical efficiencies of the ACPC at different incidence angles are then 

determined. Lighttools is a fast and accurate ray-tracing photometric analysis program which provides 

the optical system modeling and performance evaluation for non-imaging optical design [12].  

For the optical simulation, the PMMA is chosen as the material of the concentrator and the 

specular reflectivity is set as 90%. The light source generates a solar intensity of 1000Wm-2 with 

10000 solar rays which are assumed to be parallel.  

The prototype of the ACPC is manufactured by the CNC wire-cutting machine. The mirror 

reflectors are gotten from the evaporated aluminum coating, and a reflectivity of around 85% is 

achieved for the reflection mirrors. Photographs of the concentrator are presented in Fig. 3. 

Considering the machining precision, finally the ACPC prototype with the geometrical concentration 

of 2.3X is got, the total height, aperture width, length and absorber width of which are 22.8 mm, 34.5 

mm, 70 mm and 15 mm respectively. 

In the indoor experiment, a solar simulator (Oriel Sol3A Model 90943A) from Newport 

Corporation is adopted to generate a ray intensity of 1000 W/m2 through a 450W Xenon lamp. The 

electrical characteristics of solar cells are derived with a Keithley 2420 digital source meter (Keithley, 

USA). The room temperature is kept at a constant value of 25℃ during the entire test period. The ray 

intensity of the solar simulator is calibrated by the PV reference system before the experiment test and 

in order to avoid the unpredictable influence of other light rays, the experiment is conducted in a dark 

environment.    

4. Results and discussion 

4.1 simulation results 

The base height of the ACPC plays a vital role in the optical performance for it can influence the 

ray path near the base area. Based on the optical model built through the SolidWorks and Lighttools, 

the effect of the base height on the optical performance of the ACPC can be investigated. Detailed 

simulation results are presented in Fig. 4. From the results, it can be seen clearly that with the base 
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height increases form 1.35 mm to 5 mm, the optical efficiency of the ACPC always shows a 

decreasing trend. With the base heights of 1.35-5 mm, the optical efficiency remains at high level 

while when the base height is larger than 2.35 mm, the optical efficiency decreases significantly. 

Considering the cost, weight and machine precise, the base height of 2.35 mm is a better choice. Thus, 

the ACPC with the base height of 2.35 mm will be detailed studied in the paper.  

 
Figure 3 The prototype of the ACPC. 

4.2 Indoor experiment results 

For the actual engineering, the angular response of the ACPC-PV is very important because the 

solar incidence angles on the building south wall varies a lot throughout the year. In the following 

section, the electrical and optical performance of the ACPC-PV at the various incidence angles as 

compared with the non-concentrating PV are detailed analyzed. 

The short-circuit current of the ACPC-PV and the bare cell at the incidence angles of 0°-65° are 

presented in Fig. 5. From the results, it can be seen clearly that the short-circuit current of the ACPC-

PV and the bare cell all shows a decreasing trend as the incidence angle increases, which is mainly 

caused by the cosine effect [14]. It should be noted that during the experiments, the ACPC-PV and PV 

are titled from 0°-65° to create different incidence angles instead of titling the solar simulator. Thus as 

the title angle increases, the actual solar intensity on the front aperture will decrease which makes the 

short-circuit current decrease. But it’s obvious that the short-circuit current produced by the ACPC-PV 

are always much larger than that produced by the bare cell within the incidence angles of 0°-65°.      

The opto-electronic gain and the optical efficiency of the concentrator can both be used to 

identify the optical performance of a concentrator. The opto-electronic gain of a concentrator is 

defined as the ratio of the short-circuit current of the CPV module to that of the bare cell [3, 15]. The 

optical efficiency of the concentrator is the ratio of the solar radiation captured by the absorber of the 

concentrator to the total incoming solar radiation through the aperture of the concentrator and it can 

also be got by dividing the opto-electric gain by the geometric concentration ratio of the concentrator 

[16]. The maximum acceptance angle of a concentrator is defined as the angle when the gain reaches 

90% of its peak value [17]. It has been proved that the short-circuit current is proportional to the solar 

radiation that falls on the PV, thus the actual optical efficiency of the ACPC can be expressed by: 

opt,ac

1
=

with

sc

without

sc

I
η

C I
                                                                  (3) 

Where 
opt,acη is the actual optical efficiency of the concentrator; C is the geometric concentration 

ratio of the concentrator; with

scI is the short circuit current of the concentrating PV; without

scI is the short 

circuit of the non-concentrating PV. The opto-electronic gain and the optical efficiency of the ACPC 

are presented in Fig. 6 and Fig. 7 respectively.  
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Figure 4 The effect of the base height. Figure 5 The short circuit current variation of 

the ACPC-PV and the bare cell at different 

incident angles. 

It can be seen clearly from the results in Fig. 6, the opto-electronic gain of the ACPC-PV are all 

larger than 90% of the peak value within the incidence angles of 0°-65°. So it can be concluded that 

the acceptance range of ACPC is 0°-65°, which shows a good building south wall integration potential. 

And the average value of the optp-electronic gain of the ACPC within the acceptance range is around 

1.74. The simulation results are also presented in Fig. 6. A similar trend of the experiment results is 

observed as the simulation results and they show a good agreement.     

The simulation and actual optical efficiency of the ACPC at various incidence angles are shown 

in Fig. 7. From the results, it can be seen clearly that the experiment and simulation results show a 

good agreement with an average deviation of around 13%. The main reasons that cause the deviation 

can be concluded as [17]: 1) Manufacturing errors which makes the surfaces of the ACPC flawed; 2) 

the deviation of the ACPC and the PV cell. When soldering the ACPC on the PV cell base, assembly 

errors existed. 3) Test errors.   
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Figure 6 The opto-electronic gain of the ACPC 

at different incidence angles. 

Figure 7 The optical efficiency of the ACPC 

at different incidence angles. 

5 Conclusion 

A novel asymmetric compound parabolic concentrator (ACPC) is proposed in this paper for 

building south wall integration. The optical model is built in the software Lighttools to study the 

optical performance of the ACPC and optimize the geometric parameters of it. The indoor experiment 

under a solar simulator is also conducted to analyze the actual electrical performance of it. A good 

agreement is observed between the experiment and simulation results. The ratio of the maximum 

power gotten from the ACPC-PV to that produced by the non-concentrating PV cell delivers an 

average concentration ratio of 1.74X at various incidence angles which is around 75.7% of the 

maximum theoretical geometric concentration ratio of the designed ACPC. The average deviation of 

the experiment results from the ray tracing results is around 13% due to manufacturing errors, 
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mismatch losses, series resistance losses, etc. Through the opto-electronic gain analysis, the 

acceptance range of the ACPC can be determined as 0°-65° with high optical efficiency (average 

values of 75.7% for the experiment and 87.8% for the simulation) that it shows a good potential as a 

static concentrator for building south wall integration.       
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