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Abstract. In recent years, with the explosive growth of data, deep learning has become 
one of the hottest research areas in artificial intelligence. Deep learning has been 
widely used in many fields such as medical field, industry, transportation system, 
agriculture is no exception. Crop planting is a vital part of agriculture. Here, we 
review deep learning applications in crop planting. In addition, we discuss the 
challenges and future trend of deep learning in crop planting. We hope that this review 
could promote more researchers to apply deep learning methods in crop planting field.  

1.  Introduction 
With the rapid development of large data technology, Internet of things technology, cloud computing 
technology and artificial intelligence technology, agriculture has undergone tremendous changes and 
is becoming more intelligent. Smart farming regards agriculture as an organic whole system, and 
comprehensively applies information technology in production. Perception technology, extensive 
intercommunication technology and deep intelligent technology make the operation of the agricultural 
system more effective and smarter, so as to achieve the strong competitiveness of agricultural products, 
the sustainable development of agriculture, the effective use of rural energy and environmental 
protection [1]. Crop planting is the most important part of agriculture. Crop planting is closely related 
to addressing population hunger problem. 

Deep learning, a branch of machine learning, has recently become one of the hottest research areas 
in artificial intelligence [2]. Compared to traditional machine learning methods, deep learning is about 
“deeper” neural networks that provide a hierarchical representation of the data [3]. The most important 
advantage of deep learning is that reduced effort in feature engineering. Deep learning has been widely 
used in many fields such as computer vision, natural language processing, automatic speech 
recognition, etc. Deep learning applications in crop planting indicates the large potential. 

2.  Deep learning 
Shallow learning has the deficiency of feature expression and the dimensionality disaster problems. 
And the features need to be designed by human experts. Deep learning solves these problems through 
extracting these features automatically from raw data. Deep learning has become one of new research 
direction in artificial intelligence [4]. It has been successfully applied in pattern recognition, image 
processing, natural language processing, text processing, face recognition, speech recognition and 
some other domains [5,6]. The common deep learning architecture includes convolutional neural 
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network (CNN), deep belief networks (DBN), recurrent neural network (RNN). CNN is a typical 
supervised learning model with strong adaptability, which is often used to process the image data. 
Figure 1 is an example of typical CNN architecture, which describes how to classify the pest types 
from the in-filed images.  RNN is designed to handle sequential information due to the memory unit 
[7]. The typical RNN structure is shown in the figure 2. In addition, For RNN, a very important 
concept is the moment. The RNN will give an output for each moment's input combined with the state 
of the current model. DBN consists of several restricted Boltzmann Machines layers, which can be 
used for classification and generation data tasks. An autoencoder (AE) is a neural network that 
reproduces the input signal as much as possible. These basic architectures have appeared many 
variants to meet different demands of different fields. Figure 3 describes the share of each method of 
deep learning in crop planting, which indicates CNN is the most widely one among the methods of 
deep learning. 
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Figure 1. Typical CNN structure 
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Figure 2. Typical RNN structure. 
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Figure 3. Share of deep learning methods in crop planting. 
 

Open source deep learning frameworks used commonly include Theano, TensorFlow, Caffe, 
DeepLearning4, Keras, MXNet and so on, as shown in Table 1. 

Table 1. Some deep learning frameworks and their features 

Framework Core language Institution Features Benefits Cons 
Theano  

 
 

 

python  University 
of 
Montreal 

computational 
graph, 
automatic 
differentiation 

flexible, 
lots of 
libraries 

slow 
compilation 
and 
runtime, 
non-
distributed 

TensorFlow  C++/Python Google computational 
graph, 
automatic 
differentiation 

flexible, 
support 
visualization 
tools 

slow, 
non-
distributed 

Caffe C++/Python BVLC computer 
vision 
oriented   

fast, 
architecture 
as a file 

Support 
only CNN 
and MLP, 
hard to 
extend, 
non-
distributed 

Keras  Python  fchollet High level 
neural 
network API  
 

Easy to use, 
modularity, 
easy to 
extend 

slow 
runtime, 
more 
memory 
occupancy 

MXNet R/Julia/C++/Scala/ 
MATLAB/ 
JavaScript 

Amazon computational 
graph, 
automatic 
differentiation 

light weight, 
high, 
portability,  
easy to 
expand 

Small 
community 
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3.  Deep learning applications in crop planting 
Recently the application of deep learning in crop planting has been increasing and diversified.  We 
describe the relevant works including crop planning, plant phenotyping study, plant disease study, pest 
identification, crop type classification and crop yield estimation (Table 2). 

To improve the productivity of the agricultural land, Sehgal et al. [8] used ViSeed, a visual 
analytics tool, to predict optimal soybean seed variety. The study of plant phenotypes is increasing in 
recent years. Pound et al. [9] performed the localization and counting wheat spikes and spikelets with 
over 95% accuracy. Similar to Pound et al. [9], Li et al. [10] in identified wheat spikes using Laws 
texture energy. The result was over 80% accuracy. Baweja et al. [11] developed the faster RCNN to 
count the stalk and measure stalk width of Sorghum plants. The method applies equally to other 
broadacre annual crops. Aich et al. [12] used the a deconvolutional network and a convolutional 
network to count the rosette leaves. Pound et al. [13] proposed CNN for root and shoot feature 
identification and localization. Douarre et al. [14] proposed the CNN architecture for root/soil 
segmentation from X-ray tomography images. The learning process is based on purely synthetic soil 
and root. As for the monitoring phenology of agricultural plants, Yalcin et al. [15] utilized a deep 
learning architecture to classify phenological stages of plants. Pereira et al. [16] identified specific 
changes in the different electrical signals of plants based on different methods. The result showed that 
deep learning method was not the best choice in this case.  

 Weed management is a vital part of smart farming. McCool et al. [17] deployed the deep 
convolutional neural network (DCNN) for weed classification. Potena et al. [18] performed the crop 
and weed classification task in real-time based on RGB and near infrared images. Milioto et al. [19] 
detected the sugar beet plants and weeds based solely on image data. Dyrmann et al. [20] used the 
convolutional neural network to classify crops, weeds and soil in RGB images from fields. The result 
showed an pixel accuracy over 94% and a 100% detection rate of both maize and weeds. Mortensen et 
al. [21] used a modified version of VGG-16 deep neural network for semantic segmentation of crop 
and weed on the RGB image. 

The control of agricultural pests is one of the important steps in crop management [22]. Cheng et al. 
[22] used deep residual learning to identify the pest category in the complex farmland background. 
The method classified 10 classes of crop pest with 98.67% accuracy rate. Ding et al. [23] proposed 
deep learning method for identifying and counting pests.  

Crop diseases make great losses in crop yields in agricultural industry worldwide. Lu et al. [24] 
presented an automatic wheat disease diagnosis system based on deep learning technology, which 
achieved the identification of wheat diseases and localization for disease areas in wild conditions. 
Ferentinos. [25] developed convolutional neural network to perform plant disease diagnosis using 
leaves images with the 99.53% success rate. Lu et al. [26] proposed deep convolutional neural 
networks (CNNs) to identify 10 common rice diseases with an accuracy of 95.48%. Crop yield is 
related to the food supply [27]. Kuwata et al. [27] used deep learning method for crop yields 
estimation. Rebetez et al. [28] combined histograms and convolutional units to recognize crop types 
from aerial imagery. 
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Table 2. Applications of deep learning in crop planting 
Applications Models used Performance Reference 

Crop Planning  LSTM model+ 
RF Classifier 

2 different solution sets are 
given: i) Common solution 

for entire region, ii) 
Differentiated solutions at 

sub-region level. 

[8] 

 
 
 
 
 
 

Plant 
Phenotyping  

Localization and counting 
wheat spikes and spikelets 

CNN Counting accuracy for spikes 
is 95.91% and spikelets is 

99.66%  

[9] 

Identification of wheat 
spikes 

A neural 
network-based 

method  

The spike identification 
accuracy is 86.6% 

[10] 

Counting the stalk and 
measurement stalk width 

of Sorghum plants 

Faster-RCNN 
architecture and 

FCN  

R-squared correlation  is 
0.88 for stalk count 

[11] 

Leaf counting CNN Mean and standard deviation 
of absolute count difference 

is 1.62 and 2.30 

[12] 

Root and shoot feature 
identification and 

localization 

CNN Over 97% accuracy. [13] 

Root/soil segmentation CNN Quality measure=0.57 [14] 
Plant Phenology 

Recognition 
 CNN The best accuracy is 88.12% [15] 

Classification of 
plant 

electrophysiolog
ical responses to 
environmental 

stimuli 

 Four machine 
learning 

algorithms 
(CNN, OPF, 
KNN, SVM) 

together Interval 
Arithmetic 

The best accuracy is 96% [16] 

 
 

Weed 
management 

Weed classification CNN Accuracy is over 95% [17] 
Crop/weed detection and 

classification 
CNN Accuracy is over 94% and a 

100% detection rate of both 
maize and weeds 

[18] 

Sugar beets and weeds 
classification 

CNN Precision is over 99%. [19] 

Classification of weeds 
and crop 

CNN The best accuracy is 94.4% [20] 

Pest 
management 

Pest identification CNN Classification accuracy is 
98.67%  

[22] 

Pest Counting CNN The best accuracy is 98.4% [23] 
 
 

Disease 
diagnosis 

Wheat disease diagnosis CNN The mean recognition 
accuracies is over 95%. 

[24] 

Plant disease detection and 
diagnosis 

CNN Accuracy = 99.35%. [25] 

Identification of rice 
diseases 

CNN Accuracy = 95.48% [26] 

Corn yield 
estimation 

 AE RMSE = 6.298 [27] 

Crop type 
classification 

 A hybrid neural 
network 

architecture  

F1-scores= 0.98 [28] 
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4.  Discussion and Conclusion 
With the explosive growth of data, deep learning has become a hot research direction of artificial 
intelligence. Deep learning improves performance a lot on many issues compared to traditional 
machine learning algorithms.  However, deep learning is still in early childhood. There are some 
problems with deep learning: black box problems, data volume problem and the selection problem of 
appropriate architecture [4]. Furthermore, to overcome the limitations of deep learning, semi-
supervised learning, generative adversarial networks and deep reinforcement learning require further 
study [29,30,31]. And crop diseases, crop genotyping, crop breeding, crop planning and crop yield 
estimation based on deep learning algorithm still need more research in the future. From 2015 to the 
present, in the field of crop planting, there are many researches, such as plant phenotype, crop 
classification, information acquisition of cultivated land, weed management, pest management, disease 
management, yield prediction, plant species identification, identification of stored grain insects, 
classification of plant phenological information, and specific changes of plant electrical signals caused 
by different environmental factors. Because most of the researches are based on image processing, so 
many algorithms choose convolutional neural networks. The results show that deep learning has 
achieved better results than traditional machine learning in most fields. But not every field. In 2018, 
Pereira et al. [16] used different automatic classification methods to identify specific changes in plant 
electrical signals caused by different environmental factors. It shows that deep learning is not the best 
method in this case. Most cases show deep learning has better performance in processing image data. 

Deep learning has been applied in crop planting domain recently. In this paper, we provided an 
extensive review based on deep learning algorithm in crop planting domain, including crop planning, 
plant phenotyping study, plant disease study, pest identification, crop type classification, crop yield 
estimation and other researches. For future work, we plan to improve performance in existing 
researches and apply deep learning approaches to other areas of crop planting for solving more 
problems in crop planting. 
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