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Abstract. LiFePO4 batteries have a variety of superior properties, such as higher power 

densities, higher capacities, longer lifetimes and better safety. For these reasons, LiFePO4 

batteries are used extensively in electric vehicles and energy storage devices. However, there is 

an issue with the battery capacity in that it begins to rapidly fade after a certain number of 

charge and discharge cycles under compound influence of temperature and discharging current, 

which may lead to safety concerns. Therefore, it is very important to investigate the 

characteristics (voltage, current and capacity) of LiFePO4 batteries in relationship to the 

number of cycles and environmental temperature. In this paper, for the sake of high efficiency 

and safe operation of LiFePO4 batteries, we propose a Back Propagation neural network 

(BPNN) model which estimates the state of health (SoH) of the battery, so that the 

accumulated error of the capacities under different operating environments can be corrected. 

The accuracy of the model was verified in an electric vehicle with an average error of only 

1.56%. The results show that the proposed model is satisfactory. 

1. Introduction 

LiFePO4 is structurally one of the minerals under olivine, with characteristics of not including precious 

elements like cobalt, low raw material price as well as phosphorous and iron being abundant in the 

Earth's resources. The working voltage of the battery ranges generally between 3.4V and 3.2V. It has a 

large capacity (170 mAh/g) and a high discharge rate, as well as can be rapidly charged and also 

having a long cycle life. In recent years the LiFePO4 battery has become one of those receiving much 

attention from academia and industry. It has become a very important research topic with 

developmental potentials. It can satisfy usage in electric and hybrid vehicles[1]. 

Although the LiFePO4 battery has many merits, its aging would directly influence battery 

performance, being still an important issue needing to be understood. Battery aging is influenced by 

various external factors, e.g., temperature of the operating environment, depth of discharge, charging 

and discharging rates as well as no. of cycles. Currently there are already many researches 

investigating in depth the mechanisms of battery aging [2]. However, it is still a big challenge to 

quantify these factors' influence on battery performance. 

2. Related work 

Researching the attenuation mechanism in lithium ion battery is very important for designing battery 

management systems. Since the attenuation is influenced by multiple factors, the potential 

mechanisms are very complex, leading to considerable difficulties in estimating battery capacity and 

http://creativecommons.org/licenses/by/3.0
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power [3]. Understanding the reasons for battery performance downgrading will help the improvement 

of design and safety in battery management systems. Attenuation in lithium ion battery is a complex 

mutual interactional process. High charging/discharging rate, high or low temperature and deep 

discharge can all accelerate battery degradation. Mechanisms of lithium ion battery deterioration vary 

under different conditions of aging, causing errors in models estimating battery capacity. For the 

LiFePO4 battery, the loss of active lithium ions is considered one of the main causes within the aging 

mechanism [4]. It is commonly understood that electrolyte breakdown is strongly influenced by 

environmental temperature, thickening the solid electrolyte interface (SEI) and consuming active 

lithium ions, thus leading to worsening of cathode performance [5]. On the other hand, a high 

temperature environment can lead to iron ions dissolving and their structural degeneration, causing 

mismatch between the cathode and anode strengths, greatly influencing the attenuation of the battery's 

capacity [6]. 

The factors above all strongly influence battery performance and life. Battery management is used 

for calculating the battery's remaining strength and state of health (SoH) as well as to prevent over 

charging or discharging, so as to lengthen the battery's working life. Thus, to realize safe and efficient 

operation of the battery, these factors must all be considered. Since batteries are connected serially or 

in parallel into battery pack, after many charging and discharging cycles, there will be slight 

differences between the batteries, e.g., difference in capacity or internal impedance. As the number of 

cycles increase, that kind of difference will become more and more apparent. For a battery pack of 

serial connection, the total capacity is limited by the battery unit with the least capacity. If there are no 

methods to balance out, under the same working conditions the battery with the least capacity will 

sustain greater tension compared to others, worsening the problem of imbalance. Thus, battery SoH is 

one of the most significant components in a battery management system, especially for a battery pack. 

There SoH can be employed as the indicator for battery replacement. 

In order to resolve the above issues, this research proposes Back Propagation neural network 

(BPNN) to estimate SoH. It can be executed under various dynamic loads and different temperatures, 

with the advantage that it is not necessary to consider the relevant details of electro-chemical 

reactions, as well as able to handle any non-linear and complex systems, possessing universality and 

suitable for estimating SoH under various operational environments. However, a lot of sample data are 

needed for the training. The sample data and the training method can greatly influence the estimation 

error [7]. 

3. Experimental set up and procedures 

Under various temperatures in the temperature controlled chamber, the LiFePO4 batteries are 

discharged under 0.5C-Rate, 1C-Rate, 2C-Rate and 3C-Rate by an automatic charging and discharging 

machine. Information such as capacity attenuation and no. of cycles of the batteries are computer 

recorded. The equipment is shown in Figure 1 and the technical specifications are listed in Table 1. 

SoH reflects the capacity attenuation of LiFePO4 batteries. Its standard definition is the ratio 

between the battery's fully charged capacity and the nominal capacity given by its manufacturer. 

Equation (1) states the standard SoH definition [8]. Conditions of the LiFePO4 battery under various 

aging conditions are described in Table 2. 

     
  

  
      (1) 

where    is capacity of LiFePO4 batteries fully charged, and the nominal capacity    of the 

LiFePO4 batteries is 10Ah, as provided by the manufacturer. 



2019 4th Asia Conference on Power and Electrical Engineering (ACPEE 2019)

IOP Conf. Series: Materials Science and Engineering 486 (2019) 012083

IOP Publishing

doi:10.1088/1757-899X/486/1/012083

3

 

 

 

 

 

 

 

 

The LiFePO4 batteries

The Automatic charging 

and discharging machine

The temperature controlled cabinet

The data of charging and 

discharging are record by the 

computer

 

Table 1 Specification for testing LiFePO4 batteries. 

Specification Value 

No. of batteries 60 (Training data (28 batteries) is 

produced by Chroma 17020 

Automatic machine; Testing data 

(32 batteries) is produced by EV) 

Nominal 

capacity 

10 Ah 

Nominal 

operating voltage 

3.4 V 

Charge cut-off 

voltage 

3.6 V 

Discharge cut-

off voltage 

2 V 

Charging method CC-CV method 

Capacity Rate 0.5 C, 1 C, 2 C, 3 C 

Operating 

temperature 
-10     0   , 10     20     30   , 

40  , 50   
 

Figure 1 The experimental 

equipment. 

 

Table 2 SoH of LiFePO4 batteries discharged at different C-Rate and temperatures 

(First cycle) 

Temperature Discharging Current Rate 

 0.5 C-Rate 1 C-Rate 2 C-Rate 3 C-Rate 

-10  89.63% 88.94% 89.50% 91.08% 

 0  95.31% 95.33% 93.89% 92.42% 

10  100.06% 101.5% 101.2% 96.67% 

20  108.11% 109.00% 106.94% 108.33% 

30  108.29% 107.69% 104.28% 101.58% 

40  107.03% 107.17% 108.94% 109.67% 

50  114.50% 108.94% 108.22% 105.08% 

3.1. Analysis of SoH under different temperatures  

Figures 2, 3 and 4 illustrate the LiFePO4 battery discharging under -10°C, 0°C and 10°C respectively, 

showing the results after 400 cycles of different discharge rates. Figures 5 and 6 illustrate the SoH of 

the LiFePO4 battery discharging at 20°C and 30°C through 400 cycles under different discharging 

rates. Figures 7 and 8 illustrate the SoH of the LiFePO4 battery discharging at 40°C and 50°C through 

400 cycles under different discharging rates. 

3.2. Analysis and comparison of parameters 

Accurately describing and predicting the degeneration process of lithium ion batteries has become an 

important issue in battery management. SoH is an important indicator within, reflecting the remaining 

capacity of the battery before falling to the preset threshold. Owing to compound effects of 

environmental temperature and discharge rate, big variation of the remaining capacity will be 

engendered, indicating the state of the battery is not as expected. If the LiFePO4 battery continues to be 

used, there could be some safety concerns. In order to resolve this issue, the common method is to 

propose a model to represent relationships of the battery SoH and operating conditions (e.g., no. of 

cycles, internal impedance, temperature, etc). Then predictions can be made on models of 

deterioration such as simplified electrochemical models or semi-experiential models based on SoH. 

SoH indicates the state of aging of the battery. When the capacity has fallen to 80% of the nominal, 

the battery is considered not suitable for vehicular usage and should be replaced [9].  
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ANN can handle a large amount of data in complex and non-linear systems. It can accurately 

predict SoH under various operating conditions. However, the cost of high calculation load is one of 

the defects for applying ANN algorithms. In addition, the training data is another limitation in 

achieving accurate results. To stimulate neural functions for emulating electrochemical characteristics 

of batteries, a lot of dissimilar data must be processed. Reference [10] employed ANN methods and 

model discernment to monitor battery SoH, indicating ANN has shown fair results in achieving high 

precision. Through adding more training data, like discharge rate and temperature, ANN's 

performance can be raised further. Hence, this research employs three-layered back propagation neural 

network (BPNN) as the estimation model of capacity attenuation. Various practices in ensuring 

accuracy and lowering calculation costs are also proposed. 

 

Figure 2 SoH of LiFePO4 batteries at -10   under different C-Rates with 400 cycles. 

 

 

 

Figure 3 SoH of LiFePO4 batteries at 0   

under different C-Rates with 400 cycles. 
 Figure 4 SoH of LiFePO4 batteries at 10   

under different C-Rates with 400 cycles. 

 

 

 

Figure 5 SoH of LiFePO4 batteries at 20°C 

under different C-Rates with 400 cycles. 
 Figure 6 SoH of LiFePO4 batteries at 30°C 

under different C-Rates with 400 cycles. 

 

 

 

Figure 7 SoH of LiFePO4 batteries at 40°C 

under different C-Rates with 400 cycles. 

 Figure 8 SoH of LiFePO4 batteries at 50   

under different C-Rates with 400 cycles. 
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4. Modeling and algorithm 

This research makes use of three-layered BPNN to study the model for estimating capacity 

attenuation. The detailed operation flow of the BPNN is described below. 

BPNN is a multi-layer feedforward network that can learn and store a lot of input and output 

modes. It is also one of the commonly used neural network models. Its rule of learning makes use of 

gradient descent. Through back propagation weights and thresholds of the whole network are 

continually adjusted, minimizing the network's error square summation (cost). The topographic 

structure of BPNN includes (1) input layer: input variables, incl. environmental temperature (T), 

output current (i) and cumulated discharge time (cdt); (2) one or more hidden layers; (3) output layer. 

This model is indicated in Figure 9. 

Here we first define the symbols and meanings of the artificial neural networks in this research, 

referring to Figure 10[11]. Operational steps under the BPNN structure are described as show in 

Figure 11.Calculating following the steps above with Matlab, the setup is shown in Figure 12. Mean-

square error (MSE) is used to find the square summation of distances between the predicted value and 

the actual values. It was found to be only 0.00212, meaning the BPNN has resulted in convergence. 

The result is satisfactory. 

5. Model verification 

There are 32 modules in the battery pack. Batteries in each module are connected in parallel. The 

connection between modules is serial. In order to speed up the experiment, we reduced the no. of 

batteries in each module to one. They are installed into an electric vehicle, as shown in Figure 13.  

Table 4 shows the errors with the model for discharging under different current loads. The method 

of testing is taking 30 readings for each type of current load, in the order of 0.5 C-Rate, 1 C-Rate, 2 C-

Rate, 3 C-Rate and pulse current. Thus we observed the errors with model estimation during actual 

discharging. The various manners of discharging are captured as below and calculated with mean 

absolute percentage error (MAPE). Table 3 shows the errors with the model for discharging under 

different current loads. The method of testing is taking 30 readings for each type of current load, in the 

order of 0.5 C-Rate, 1 C-Rate, 2 C-Rate, 3 C-Rate and pulse current. Thus we observed the errors with 

model estimation during actual discharging. 

6. Conclusion 

SoH is the indicator for estimating battery life. To ensure safe operation and prevent over discharge, 

an accurate SoH estimation is very important for lithium ion batteries. That has already become the 

main focus of electric vehicle development. 

This research makes use of lithium iron phosphate batteries with 10Ah capacity and 3.4V rated 

voltage for testing under various environmental temperatures and discharge rates. Under testing 

conditions of 400 discharge cycles the discharge voltage and current of the batteries during the 

discharge process are recorded. We analyzed batteries with different degrees of aging and gathered 

their corresponding characteristics. The ANN model can respond to temperature and current changes 

to precisely estimate the SoH of LiFePO4 battery and can be actually applied for testing in electric 

vehicles. Results obtained indicate that the average error of the ANN model for predicting information 

of the electric vehicle under different current load and environmental temperatures to be only 1.56%. 

The degree of accuracy is satisfactory. 
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Figure 9 Architecture of a neural network 

model. 

 

Figure 10 Symbols of the neural network 

model. 

 

 

Figure 11. BPNN Algorithm 

𝑏𝑗  𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑆𝑗  𝑗    2 …  𝑝 

𝐿𝑡   𝑣𝑗 𝑡

𝑝

𝑗=1

𝑏𝑖 + 𝛾𝑡  𝑡    2 …  𝑞 

𝑣 𝑗 𝑡  𝑁 +    𝑣 𝑗 𝑡  𝑁 + 𝛼 ∙ 𝑑𝑡
𝑘 ∙ 𝑏𝑗  

𝛾𝑡 𝑁 +    𝛾𝑡 𝑁 +  𝛼 ∙ 𝑑𝑡
𝑘 

𝑤 𝑖 𝑗  𝑁 +    𝑤 𝑖 𝑗  𝑁 + 𝛽 ∙ 𝑒𝑡
𝑘 ∙ 𝑎𝑡

𝑘 

𝜃𝑗 𝑁 +    𝜃𝑗 𝑁 +  𝛽 ∙ 𝑒𝑡
𝑘  

(1) Initialization. 𝑤 𝑖 𝑗  and 𝑣 𝑗 𝑡 are given to each 

weight; 𝜃𝑗 and 𝛾𝑗 are assigned to thresholds. Random 

variables are set. 

(2) Randomly select a group of input vectors 𝑛𝑒𝑡 𝑘  

 𝑎1
𝑘  𝑎2

𝑘  …  𝑎𝑛
𝑘  and output vector  𝑠1

𝑘  𝑠2
𝑘  …  𝑠𝑞

𝑘 . 

Input the data 𝑛𝑒𝑡 𝑘  ,connection weight 𝑤 𝑖 𝑗  and 

threshold 𝜃𝑗  to calculate the input of the nodes of the 

hidden layer 𝑆 𝑗 , then through log-sigmoid the output 𝑏 𝑗  
of the nodes of the hidden layer are calculated, as indicated 

in equation (2). 𝑆𝑗  𝑤𝑗 𝑖
𝑛
𝑖=1 𝑎𝑖 + 𝜃𝑗 𝑖  𝑗  

  2 …  𝑝 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥  
1

1+𝑒 −𝑥 
                    (2) 

(3) Through output 𝑏𝑗  of the hidden layer, connection 

weight 𝑣 𝑗 𝑡  and threshold 𝛾𝑗 calculate the output 𝐿 𝑡  

of the nodes of the hidden layer. Through log-

sigmoid the response 𝐶 𝑡  of the units of the output 

layer are calculated. 

𝐶𝑡  𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐿𝑡  𝑡    2 …  𝑞            (3) 

(4) Making use of target vector  T 𝑘   𝑦1
𝑘  𝑦2

𝑘  …  𝑦𝑞
𝑘  

and the actual BPNN output 𝐶𝑡, error 𝑑𝑡
𝑘 of the nodes 

of the output layer are calculated, as indicated in 

equation (4). 𝑑𝑡
𝑘  𝐶𝑡  − 𝐶𝑡  𝑦𝑡

𝑘 − 𝐶𝑡  (4) 

(5) Making use of the connection weight 𝑣 𝑗 𝑡 , error 𝑑𝑡
𝑘 

of the nodes of the output layer and output 𝑏𝑗  of 

nodes of the hidden layer, error 𝑒𝑗
𝑘 of the nodes of the 

hidden layer are calculated, as indicated in equation 

(5). 𝑒𝑗
𝑘    𝑑𝑡 ∙ 𝑣𝑗 𝑡

𝑞
𝑡=1  𝑏𝑗  − 𝑏𝑗  (5) 

(6) Making use of error 𝑑𝑡
𝑘  of the nodes of the output 

layer and the output 𝑏𝑗  of the nodes of the hidden 

layer to adjust the weight 𝑣 𝑗 𝑡  and threshold 𝛾𝑗 , as 

indicated in equation (6). 

where 𝑡    2 …  𝑞 j    2 …  p  < 𝛼 <                  

(7) Making use of error 𝑒𝑗
𝑘  of the nodes of the hidden 

layer and the input net 𝑘  of the nodes of the input 

layer to adjust the 𝑤 𝑖 𝑗  and threshold 𝜃𝑗, as indicated 

in equation (7). 

where 𝑖    2 …  𝑛 j    2 …  p  < 𝛽 <   (7) 

(8) Randomly select the next learning sample vector for 

the model and return to step 3, until the training of m 

samples is finished. 
(9) From the m samples randomly select a set of input 

and target samples, return to step 3, until the error of 
the model e is lower than the preset value, which 

would indicate network convergence. If the no. of 

times of learning is greater than e, it would indicate 
unable to converge. 

(10) Learning completes. 

(1) Input vector layer: net 𝑘   𝑎1
𝑘  𝑎2

𝑘  …  𝑎𝑛
𝑘  𝑘  

  2 …𝑚; 

(2) Target vector layer: T 𝑘   𝑦1 𝑦2 …  𝑦𝑞 ; 

(3) Hidden layer nodal input vector 𝑆 𝑘  

 𝑠1 𝑠2 …  𝑠𝑝  and output vector  𝐵 𝑘  

 𝑏1 𝑏2 …  𝑏𝑝 ; 

(4) Output layer nodal input vector 𝐿 𝑘  

 𝑙1 𝑙2 …  𝑙𝑝  and output vector  𝐶 𝑘  

 𝑐1 𝑐2 …  𝑐𝑝 ; 

(5) Connection weight from input layer to hidden 

layer 𝑤 𝑖 𝑗  i    2 …  n j    2 …  p; 

(6) Connection weight from hidden layer to output 

layer 𝑣 𝑗 𝑡  j    2 …  p t    2 …  p; 

(7) Output thresholds of nodes in hidden layer 

𝜃𝑗  j    2 …  p; 

(8) Output thresholds of nodes in output layer 

𝛾𝑗  j    2 …  p. 
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Figure 12 BPNN Architecture. 

 

Table 3 MAPE between ANN Model and 

Data from EV 

C-

Rate 

0.5  1  2  3  Pulse  Avg. 

Temp. 

(  ) 

16 20 18 17 22  

MAPE 

(%) 

1.18 1.59 1.16 1.28 2.58 1.56 

 

 Figure 13 The tested EV. 
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