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Abstract. Building structures are continuously subjected to loads, environmental and 
climate influences. The effects are particularly noticeable over time in a case of historic 
buildings. The effects of the interaction processes are changes in a technical parameter. 
Structures require renovation, repairs and strengthening preceded by identification of 
forces and stresses in members. Apart from traditional technologies, modern materials 
and adhesive bonds with high strengths are used in renovation works. The paper presents 
an effective way of modelling and assessing the state of stresses in structures and 
degraded or strengthened elements using computer analyses. The developed model is 
based on the finite element method, significantly reducing the number of unknowns. 
The model can be used to identify the state of stress and strains in the design of 
strengthening, repairs and renovations of structures. 

1.  Introduction 
Constructions are continuously subjected to loads, environmental and climate influences. The effects 
are noticeable more and more clearly over time and particularly in the case of historic buildings [1]. 
Loads and the interaction processes cause (induce) parameter changes and degradation of materials. 
Important are also structural changes introduced in the past and implemented during the use of historic 
buildings. In some cases, such activities may have catastrophic consequences [2]. Some historical 
facilities require renovation, repairs or strengthening preceded by the process of identification of forces 
and stresses in structural elements. The historic structures are mostly made of a combination of different 
materials: stone, bricks, mortar, wood. Modern adhesive materials are introduced in the renovation 
works along with traditional technologies [3], [4]. 

2.  Heterogeneous materials and modelling 
The essential feature of heterogeneous (complex) materials which is important in the analysis of 
phenomena in such materials under the load is the existence of connections, contacts and layers 
(figure 1). Approaches used in material modelling are presented in monographs e.g. [5], [6]. 
Scientific studies analyse and model phenomena in areas of dimensions much smaller than the structure 
(dimensions of the sample element, several components). The numerical determination of interactions 
in non-homogeneous structures is often carried out by introducing special elements in the model. Such 
kind of elements are referred as “zero thickness element”, contact element or interface. The use of 
interface elements takes into account the stiffness of the joint in the total stiffness of the modelled area. 
They are used in modelling, among others, joints in masonry structures [9], [10], [11], [12]. 
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Masonry is a commonly encountered non-homogeneous construction material in historic buildings and 
consists of units connected by mortar. In the numerical modelling of masonry, mainly the finite element 
method and the discrete element method are used. Based on the finite element method, heterogeneous 
and homogeneous models are developed. Heterogeneous models distinguish masonry components, 
units, mortar and joints between them [9]. In homogeneous models masonry is assumed as a fictitious 
homogeneous medium and it is then possible to analyse entire structures [13]. In order to determine 
substitute properties various methods of homogenisation are used [14], [15]. One of the features of the 
modelling methods mentioned above is a large number of unknowns in the developed models, ranging 
from several thousands to several millions in detailed models. The paper presents an effective method 
of modelling and assessing the state of stress in structures and degraded or strengthened elements using 
numerical modelling. 

3.  The concept of heterogeneous materials modelling and degradation processes in structures 
In non-homogeneous materials and complex structures subjected to stresses the damage is initiated in 
interface or in bonded material. An initiation of destruction in layers near joints is also observed if the 
contact has higher strength compared to the strength of the materials being joined. It is possible when 
the materials have been degraded locally or modern, durable highly adhesive materials have been used 
in renovation processes [4]. Since the modelling of solids using “zero-thickness” elements requires 
taking into account unreal and difficult to determine properties also the application of an effort criteria 
becomes a problem. The paper proposes a method that allows the analysis of the state of effort in such 
structures. Determination of stresses in non-homogeneous materials is carried out using relationships of 
the finite element method. The proposed model makes it possible to take into account the variability of 
physical parameters present in adhesive zones, substructures or degraded regions of materials. 
An area is distinguished near the cohesion zones of materials with different properties and the continuity 
of displacements in these zones as well as in each of the constituent areas is assumed [16]. 
In the areas above and below the cohesion surface it is possible to distinguish 𝑛 layers of certain 
dimensions and known material parameters, e.g. Young’s modulus 𝐸, Poisson’s ratio 𝑣 (figure 2). It is 
further assumed that the finite element mesh of the entire multi-coherent domain is known, and the 
nodes are not located on the surfaces of cohesion. Displacements (unknowns) are located in nodes and 

Figure 1: Joints of various materials: a) bricks joined with mortar, b) wood-adhesive bond [7], 
c) concrete d) bricks to reinforced cementitious matrix [8], e) externally bonded FRP systems 
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form a global displacement vector 𝒒, consisting of nodal displacements of all elements. In the vector 
a number of displacements near the cohesion surfaces are distinguished, and on selected nodes the 
element 𝑒 is defined. Node displacement components of element are ordered and form a vector: 𝒖௘ = ൛𝑢ଵ,𝑣ଵ, 𝑢ଶ,𝑣ଶ, 𝑢ଷ,𝑣ଷ, 𝑢ସ,𝑣ସൟ. (1)
A displacement field in the element is assumed to be approximated by shape functions 𝑁௘ forming the 
matrix of shape functions: 𝑵 = ሾ𝑰𝑁ଵ 𝑰𝑁ଶ 𝑰𝑁ଷ 𝑰𝑁ସሿ, 𝑰 - 2×2 unit matrix. Denoting by 𝑳 matrix of 
differential operators the deformation vector is expressed by the equation: 𝝐 = 𝑳𝑵𝒖௘. (2)
Stresses 𝝈 in subregions are determined according to the standard relationships of the finite element 
method [17], assuming in each their physical properties. Displacements of nodes are calculated using 
the theorem on the minimum total potential energy. It equals to the difference in energy of internal 
deformation and the work of external forces 𝑊ொ = 𝒒்𝑸. The energy of internal deformation is expressed 
by: 𝑊ఢ = 12 න 𝝐்௏ 𝝈𝑑𝑉 = 12 න 𝝐்௏ 𝑬 𝝐𝑑𝑉 = 12 න ሺ𝑳𝑵𝒖ሻ்௏ 𝑬ሺ𝑳𝑵𝒖ሻ𝑑𝑉 = 12 𝒒்𝑲𝒒. (3)

The global stiffness matrix 𝑲 of the system is the sum of the stiffness matrices of elements 𝑲௘ calculated 
by integrating the displacement function over element volume: 𝑲௘ = න ሺ𝑳𝑵𝒖ሻ்௏೐ 𝑬ሺ𝑳𝑵𝒖ሻ𝑑𝑉 = න 𝑩௘்௏೐ 𝑬𝑩௘𝑑𝑉. (4)

According to above-mentioned assumptions, the stiffness matrix of a layered element, denoting the 
material thickness by 𝑡 and the elastic stiffness matrix for layer 𝑖 by 𝑬ሺ௜ሻis calculated as follows: 𝑲௘ = 𝑡 න 𝑩்஺భ 𝑬ሺଵሻ𝑩𝑑𝐴 + ⋯ + 𝑡 න 𝑩்𝑨𝒊 𝑬ሺ௜ሻ𝑩𝑑𝐴 + ⋯ + 𝑡 න 𝑩்஺೙ 𝑬ሺ௡ሻ𝑩𝑑𝐴. (5)

The displacement field of a medium in which two directions of variation of physical parameters occur, 
is approximated with shape functions whose form depends on the number of nodes adopted in an element 
(figure 3). In the four-node and eight-node spatial elements (figure 3a, c) polynomials are linear, and of 
the second degree in a plane eight-node element (figure 3b). Element stiffness matrices are determined 
by integrating functions of the internal energy in the subspaces marked by 𝑖 according to the equation 
written in a general form: 

Figure 2: A flat layered element: a) concept, b) formulation 
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Modification of geometrical parameters of elements (dimensions, figure 3a), allows generating 
derivative internal structures with different geometries. It enables control of the numerical model being 

built in terms of coherence of adjacent structures of neighbouring elements and unification of the 
stiffness matrix calculation procedure. 
 
In order to determine zones of material failure of complex structures as well as for identification of 
damage and parameters degradation, failure criteria are used [18]. To determine damage (failure) 
initiation in a modelled structure, it is proposed to use Rankine, Coulomb-Mohr and Christensen [19] 
criterion. The Coulomb-Mohr criterion is also applied for joints. 
A computer simulation of the degradation process is proposed to be implemented according to the 
algorithm illustrated in the figure (figure 4). Propagation of a damage is determined by incremental-
iterative procedure, using the secant stiffness matrix in each load step 𝑖 and solving the equilibrium 
equations in the form: 
 𝑲௜𝒒௜ = 𝑸௜. (7)
 

𝑲𝒆 = න 𝑩்௏భ 𝑬ሺଵሻ𝑩𝑑𝑉 + ⋯ + න 𝑩்௏೔ 𝑬ሺ௜ሻ𝑩𝑑𝑉 + ⋯ + න 𝑩்௏೙ 𝑬ሺ௡ሻ𝑩𝑑𝑉. (6)

a)    b)    c) 

Figure 3: Elements with layers in two and three directions: a) four-node element, b) eight-node plane 
element, c) eight-node spatial element 

 

 
 
Figure 4: Strategy for performing numerical calculations 
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4.  Summary and conclusions 
Numerical simulations in addition to traditional methods of analysis are an alternative in the analysis of 
historical complex structures. Multi-criteria analysis provides information of the safety of elements and 
building structures. The proposed verification method of the effort state in complex structures makes 
the analysis of the phenomena caused by loads and degradation processes more accurate. The approach 
enables stress field determination and degradation modelling in materials and structures composed of 
heterogeneous materials. The practical application of the model are analyses of interaction zones 
including historical masonry buildings among others, their reconstructions and strengthening (figure 5). 
It makes possible to determine stresses in elements and structure before and after the reinforcement, in 
which traditional and modern materials and technologies have been applied. The advantage is 
a significant reduction of the number of finite element unknowns in a model. Proposed computer 
algorithm allows identification of degradation progress during renovation processes. 
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Figure 5: Applications: a) modernization and expansion, b) reconstruction and strengthening of 
masonry, c) analyses of large heterogeneous structures 
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