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Abstract. Three-dimensional (3D) point cloud understanding is important for autonomous 

robots. However, point clouds are normally irregular and discrete. It is challenging to obtain 

semantic information from them. In this paper, we present a method to build a dense semantic 

map, which utilizes both two-dimensional (2D) image labels and 3D geometric information. 

The dense point cloud is built by using a state-of-the-art RGB-D SLAM system. It is further 

segmented into meaningful clusters using a graph-based method. Then, image keyframes 

during the SLAM process are used to extract semantic image labels by a convolution neural 

network (CNN). Finally, these semantic labels are projected to the point cloud clusters to 

achieve a 3D dense semantic map. The effectiveness of our method is validated on a popular 

public dataset. 

1. Introduction 

Scene understanding is crucial to autonomous driving and mobile robotics. Recent research focuses on 

scene reconstruction to build a 3D sparse or dense map, such as KinectFusion [1], ElasticFusion [2] 

and DynamicFusion [3]. However, there is no semantic information in those maps, from which robots 

cannot obtain a semantic-level understanding of surroundings. In fact, recent years have witnessed 

great progress in 2D image semantic segmentation. With the help of CNN, we can analysis 2D level 

semantic information in images, such as the work in FCN [4], U-Net [5], SegNet [6], RefineNet [7], 

PSPNet [8] and DeepLab [9-11]. Meanwhile, 3D point cloud semantic segmentation is a hot issue in 

computer vision, and it has made great progress in the recent years, including PointNet [12], 

PointNet++ [13] and PointCNN [14]. However, these approaches merely make use of 3D information 

to analyse point cloud. 

Actually, point cloud can be generated by RGB-D SLAM, e.g. ORB-SLAM2 [15], using cheap 

RGB-D sensors like Asus Xtion. In RGB-D SLAM, RGB images have rich texture information, and 

point clouds have geometrical information. In 3D semantic segmentation and mapping, most of 

existing methods use either RGB images or point clouds as input. However, few methods make use of 

both 2D and 3D information. In this paper, we introduce a system that fuses 2D and 3D information to 

build a dense semantic map. Our main contributions of this paper can be summarized as follows: 

 An efficient segmentation method for 3D point cloud 

 A semantic labelling method for 3D point cloud that fuses both 2D image information and 3D 

geometric information 

http://creativecommons.org/licenses/by/3.0
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 A 3D dense semantic mapping system 

2. Related Work 

2.1. Semantic SLAM 

Traditional simultaneous localization and mapping (SLAM) systems mainly focus on using low-level 

geometric features, such as points, lines, and planes, which cannot provide semantic information. 

Semantic SLAM can give semantic information of environments. It can help robots to understand 

surrounding scenes in both geometrical and content level. Salas-Moreno et al. proposed the SLAM++ 

[16], which can perform object detection in RGB-D tracking and mapping. The study by John 

McCormac et al. on semantic SLAM was SemanticFusion [17]. The method uses a convolution neural 

network to produce class probability maps, and fuses these predictions into the 3D map. Keisuke 

Tateno et al. presented a real-time dense monocular CNN-SLAM [18]. With the aid of CNN, CNN-

SLAM can perform not only depth prediction, but also semantic segmentation. DA-RNN [19] 

introduces a new recurrent neural network (RNN) architecture for semantic labelling on RGB-D 

videos, which utilizes information in multiple viewpoints to improve segmentation performance. Tong 

[20] combines different SLAM systems facilitated by a scene detection method. 

2.2. 2D Object Detection and Semantic Segmentation  

An essential component to get semantic information is object detection, which can localize object 

instances in images. Girshick et al. [21] presented R-CNN, which proposed to apply CNN to object 

detection. Other similar methods have been proposed in recent years, like Fast R-CNN [22], Faster R-

CNN [23], Mask-RCNN [24] and YOLO [25-26]. R-CNN uses selective search algorithm for 

generating region proposals, which runs very slow. Faster R-CNN replaces the slow selective search 

algorithm with a fast neural net. Mask R-CNN improves the region of interest (ROI) pooling layer and 

extends Faster R-CNN to pixel-level image segmentation. 

Semantic segmentation is to understand an image at a pixel level, which can label each pixel with a 

class identity. Similar to object detection, state-of-the-art semantic segmentation approaches also rely 

on CNN. FCN [4] by Long et al. is the first end-to-end system, which popularizes CNN architecture 

for semantic segmentation. U-Net [5] is a popular encoder-decoder architecture which can make use of 

annotated samples more efficiently and have a higher accuracy. SegNet [6] is a similar encoder-

decoder architecture. SegNet copies indices from max-pooling for up-sampling, which makes it more 

memory efficient. RefineNet [7] proposes a method called RefineNet block which fuses both high 

resolution and low resolution features. It solves the problem of significant decrease in image 

resolution when we repeat the sub-sampling operation. PSPNet [8] introduces a pyramid pooling 

method to aggregate the context. DeepLab [9-11] utilizes dilated convolutions to increase the field of 

view. 

2.3. 3D Point Cloud Segmentation and Semantic Analysis 

Point cloud segmentation is the process of dividing point clouds into different regions, each of which 

has similar properties. It is an essential step towards scene understanding from point clouds. Driven by 

specific applications, like environment modelling in robotics, 3D point cloud segmentation becomes a 

very active research topic. Point Cloud Library (PCL) [27] is a popular library which provides open-

source segmentation algorithms. Early approach [28] uses RANSAC to detect planes from the point 

clouds, and then it divides objects with Euclidean separation. Region growing [29] algorithm was 

proposed in 2D image processing work. Later, it was used in the work related to 3D point cloud. 

Rabbani et al. [30] presented a method for segmentation of point clouds using smoothness constraint, 

which finds smoothly connected areas in point clouds. Vo et al. [31] introduced a novel octree-based 

region-growing algorithm for the fast surface patch segmentation of 3D point clouds in urban 

environments. Stein et al. [32] divided the point cloud into some individual segments using Locally 

Convex Connected Patches (LCCP) algorithm, which uses normal vector to judge local convexity. 
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Golovinskiy et al. [33] proposed a min-cut based method of segmenting objects in point clouds, which 

can be adapted for both automatic and interactive segmentation. 

Different from 2D images, 3D point clouds are irregular and unordered. Thus, the common way in 

2D image processing like convolution is ill-suited for them. Recently, deep neural network based 

methods are proposed for 3D point cloud classification and segmentation, such as PointNet [12] and 

PointNet++ [13]. The PointNet is able to learn directly from unordered point clouds, which combines 

local point features and global information to perform 3D segmentation. Based on PointNet, 

PointNet++ introduces a hierarchical neural network to learn local features with increasing contextual 

scales, which can learn deep point set features efficiently and robustly. PointCNN [14] presents a 

novel approach named X-transformation, which can take advantage of CNNs for point cloud 

processing. However, these methods use only point cloud information, which is difficult to be 

extended to semantic labelling. 

3. Deep Learning Based Semantic labelling in 3D Point Cloud 

Our system is based on ORB-SLAM2 [15] and consists of 3 modules: visual SLAM module, point 

cloud segmentation module and semantic labelling module. We use a keyframe-based update strategy 

to generate point cloud data. When a keyframe is inserted, we use a modify deep learning framework 

to process it to obtain object labels. Furthermore, we segment the point cloud with a graph-based 

method. Finally, we project image labels to the point cloud segments to achieve semantic labelling of 

the point cloud. The above process is shown in figure 1.  

 
Figure 1. Overview of our semantic 3D mapping system 

3.1. The visual SLAM module 

The visual SLAM module generates the point cloud data from the RGB-D dataset, which will be 

further processed by the point cloud segmentation module. The visual SLAM module works in three 

threads: A tracking thread, a local mapping thread and a loop closing thread. 

The tracking thread takes charge of extracting and matching ORB features in gray-scale images 

converted from raw RGB images for localizing the camera. Besides, it decides when to insert a new 

keyframe. 

The local mapping thread focuses on building the local 3D sparse map. It optimizes both local map 

and the keyframe poses by performing local bundle adjustment (BA). To generate point cloud data, 

only keyframes are utilized, while other frames are used to compute camera poses. Point clouds are 

generated by transforming the 3D points in the depth images from the camera coordinate system to the 

world coordinate system. We also obtain a rough semantic map in this thread, which will be described 

in Sect. 3.3. 

The loop closing thread detects appearance loops and then corrects the accumulated drifts by pose 

graph optimization. It is accomplished by using a bag-of-words method among the keyframes. 
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3.2. The point cloud segmentation module 

In the point cloud segmentation module, we only rely on geometric information to segment the point 

cloud, while the image texture corresponding to the point cloud has no effect on the segmentation 

result. First, we use the supervoxel method [34] to segment the original point cloud as shown in figure 

2. In this way, we can not only reduce the computational cost but also convert point cloud into surface 

patches according to the similarities of the points. The result of supervoxel can be represented by an 

adjacency graph { , }G    where i v   are patches and   connect adjacent patches ( i , j ). 

 
Figure 2. supervoxels of point clouds 

After the process of supervoxel, there is a centroid ic , and a normal vector in  in each surface patch. 

The scene segmentation can be framed as a graph partitioning problem. Make it clear in figure 3, 

nodes are the surface patches, each of node belongs to an object. We are supposed to determine 

whether edges are ON or OFF. 

It is a common way to compute the similarity of nodes by using Euclidean distance [35] with mean 

shift algorithm [36]. However, the method has a high computational complexity. Normal vector [32] is 

a reflect of local convexity information, which can be used for clustering. However, it becomes 

unreliable when there is a higher percentage of noise in point clouds. Thus, we propose to fuse support 

plane to suppress this negative effect. Supposing that we have K  support planes 1 2{ , ,..., }ks s s  in a 

point cloud, and surface patches have been obtained in these planes. We define a variable 

1{ } , [0, ],N

i i ib b K b K   indicates that surface patch belongs to surface plane ks . Then, we extract 

planes of all objects and distribute surface patches to them. 

 
Figure 3. graph model of surface patches 

After we get surface patches, we use RANSAC [28] to process patches to generate plane candidates

1 2{ , ,... },mPC pc pc pc  and then compute ( , )i md c pc , which is the distance of the surface patch 

centroid ic  to plane mpc . With a threshold  , we can get all patches within the distance   to plane 

mpc , named { | ( , ) }i i mv V d c pc     . Then, we define: 
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( )cmD p  are possible planes for objects in the point cloud. In the experiments, we set 45   and 

4.5cm  . Then the plane extraction problem becomes to minimize the energy formulation: 

          
* arg min ( ),P E P P PC  .                                                 (2) 

And our fitting energy formulation is: 

( ) ( )
m

m

pc E

E P D pc


  .                                                       (3) 

After we finish plane extraction, we get planes L  and surface patches K .We can directly use the 

fast graph-based [37] method to perform segmentation. 

3.3. The semantic labelling module 

Original map generated by ORB-SLAM2 has no semantic information (see figure 4(a)), which is 

merely a set of irregular and unordered points. We perform semantic labelling in point cloud with the 

aid of a deep learning framework. 

We use a modify YOLO v3 [26] framework to detect objects in keyframes extracted by the SLAM 

module. Image boundaries of the labels are not accurate enough in 2D images (see figure 4(b)), but we 

can project 2D semantic labels to 3D point cloud to achieved reasonable 3D semantic mapping, as 

shown in figure 4(c). However, it is a rough semantic map and not accurate enough to use. As 

mentioned before, we have already performed point cloud segmentation, then we can fuse 

segmentation and rough semantic map to improve mapping performance. Original labels come from 

RGB images, here we make use of both 2D label and 3D segment result to perform semantic segment. 

Finally, each object region in the point cloud gets a specific semantic label. More details of the process 

will be further described in Sect. 4.3.  

 
Figure 4. Semantic labelling from 2D image to 3D point cloud 

      (a)   original point cloud   

 (c)   point cloud with semantic 

labels, using specific colors 

(b)   object detection 
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4. Experiments and Results  

We evaluate our system with the popular TUM dataset [38]. Without training the neural network for 

semantic labelling in TUM dataset, we only focus on validating our 3D semantic mapping method 

with a few kinds of known objects. 

4.1. Experimental setup 

The system runs on a laptop with Ubuntu 14.04 64-bit operating system, an Intel Core i5-6300HQ (4 

cores @2.3GHZ) CPU, 16G DDR4 RAM and a GTX690M GPU. Our visual SLAM module is able to 

reach real-time performance. With the help of GPU, YOLO v3 is able to detect images at 8 frames per 

second. 

4.2. Point cloud segment results 

In this experiment, we evaluate our point cloud segmentation method qualitatively by comparing the 

segmentation results with other existing methods. Locally Convex Connected Patches (LCCP) method 

only uses local convexity or concavity for segmentation, which ignores global geometrical information.  

Lack of global information may lead to wrong segment result, as we can see in figure 5(a), LCCP 

method is unable to segment small objects such as the keyboard from indoor scene. 

Region Growing method initializes the seed points by their curvature value, and then each region 

from these points will grow by adding neighbour points. However, the method is sensitive to noise 

data. In the segment result, we can see that background object wall and foreground object desktop are 

mixed (see figure 5(b)). 

Thus, we use supervoxel method to reduce the time costing, and then make use of both global 

information such as supporting planes and local information to get a better segmentation performance. 

We can check whether different methods can segment out objects in the point cloud. As it shows in 

figure 5(c), we can see that our method is able to segment the majority objects in this indoor scene. 

Furthermore, based on an efficient graph-based approach, our segmentation method is faster than 

LCCP and Region Growing method. In this experiment, our SLAM system uses 82060 RGB images 

and 82060 depth images to build a 3D point cloud map, which contains 952563 points. Our system is 

able to finish segmentation within 5 seconds. Time costs of these methods are shown in table 1. 

 
Figure 5. Segment results 

(a)    LCCP 

(c)    Ours 

(b)    Region Growing 
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Table 1. Time cost comparison, in milliseconds. 

                     Method Time-costing 

LCCP 7138 

Region Growing 13214 

Ours 4638 

4.3. Semantic segmentation results in the point cloud 

Our visual SLAM module uses YOLO v3 to obtain object labels and project them to point cloud. The 

point cloud has XYZ and RGB information, which represents Euclidean coordinates and the color data 

for each point (see figure 6(a)). Besides, the point cloud has semantic information from 2D images. 

After the point cloud segmentation, we also obtain a segment label for each point (see figure 6(b)). 

However, this segment label is only a random label without semantic meaning. Then we can fuse two 

point clouds to combine semantic information with the segment labels, in this way we obtain the final 

semantic point cloud as shown in figure 6(c). 

In fact, two point clouds have the same number of points, and we can use PCL library to fuse them. 

After fusion, we can not only correct the segment result, but also perform semantic labelling. In this 

way, we convert 2D image labels to 3D point cloud labels. By the way, our semantic labelling module 

cannot reach a real-time performance, but it can be a helpful module for a visual SLAM system. 

 

 
Figure 6. fuse label and segmentation 

cup 

keyboard 

monitor 

mouse 

teddy bear 

(a)   point cloud with   

semantic label 
(b)   segment result 

(c)   semantic map 
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YOLO v3 was trained on coco
1
 dataset which contains 80 classes. However, we only detect several 

classes in our indoor scene (cup, keyboard, monitor, mouse, teddy bear) as objects of interest. Most of 

the classes in coco dataset are outdoor objects classes, which do not exist in our experiment. 

5. Conclusion  

In this work, we present a novel approach to combine 2D object labels and 3D point cloud 

segmentation to achieve 3D semantic mapping in visual SLAM. We propose an effective method of 

graph-based 3D point cloud segmentation. Another contribution of this paper is that we fuse 2D and 

3D information to build a dense semantic map. We share the source code on github
2
. Besides, a video 

demonstration can be found online
3
. 
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