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Abstract. The pursuit of higher efficiency for compression and micro-power generation systems 

has pushed the researchers to an in-depth analysis of positive displacement machines. Single-

screw machines, among the others, are gaining attention in the Organic Rankine Cycle (ORC) 

systems as expanders, thanks to their extended maintenance intervals and compactness. The 

performances of such devices are strongly affected by the working conditions, and especially the 

presence of oil has major effects on the operability. The main advantage of adopting an oil-

injected device consists in the lube sealing effect, which permits better performance (greater 

shaft power for assigned boundary conditions) as well as higher reliability. The choice of whether 

using an oil-free configuration or not is related to the working fluid cleanness, system complexity 

(oil separator, filters, recovery pump), flow rate and pressure ratio. In this paper, the full 3D 

numerical simulation of an oil-injected single-screw expander operating with R245fa refrigerant 

is presented. Oil is injected together with the working fluid at the inlet of the machine. Oily 

droplets are tracked over the admission duct to show how the oil droplets reach the inlet ports of 

the screw machine. Different behaviors related to different oil droplet diameters in the range of 

(0.5 – 50) μm are studied, for the same operating point. The proper distribution of the oil droplets 

on the screw inlet ports are directly related to the single screw expander performance. In addition, 

a particular screw position is analyzed for studying the effects of leakages on the oil injection 

and oil film evolution over the time. 

Nomenclature    

C specific heat [kJ/kg K] ν kinematic viscosity 

[m2/s] 

CFC chlorofluorocarbon ODP ozone depletion potential 

CFD computational fluid dynamics ORC organic Rankine cycle 

FF fluid film σ surface tension [N/m] 

HCFC hydrochlorofluorocarbon ρ density [kg/m3] 
 

1.  Introduction 

The increasing energy demand, together with the need of a cleaner way of production, has raised the 

attention of industry and researches towards the recovery of energy from low-quality heat sources. 

http://creativecommons.org/licenses/by/3.0
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Among the others, the use of Organic Rankine Cycles (ORCs) is constantly growing, ranking this 

technology as the most employed one for generating power from low-grade heat [1]. Evidence of the 

increasing interest into this topic is the number of research papers: whereas almost 100 research papers 

were published from 2005 to 2014, in the sole 2015 the same number of publications has been reached 

[2]. Within the low-grade heat recovery framework, a great part of the applications regards source power 

that are lower than 100 kWe. To this range, the class of so called micro and mini ORCs applies. This 

work deals with this class of power plants. The research about this topic regards mainly the improvement 

of the overall efficiency. 

Mini and micro-ORCs overall efficiency is strongly affected by the efficiency of two of their 

components: the expander and the feeding pump. In light of this remark, it is obvious that such 

components have been thoroughly studied. For small scale cycles, usually volumetric pump and 

expanders are used, and this last machine is the component that is receiving attention the most, see for 

example [3-5]. Due to the smaller volume flows inside these systems, non-conventional expansion 

technologies such as screw expanders become more interesting. Particularly, due to their cost 

effectiveness, screw machine has been widely employed for this kind of application [4,6], mostly 

deriving the expander from compressors used the other way around [7]. 

Screw-type machine are divided in two main families: twin and single screw devices. The vast 

majority of the applications see the employment of the first one. The use of single screw devices is still 

marginal, even if they have some pros with respect to the twin-ones: for example, the force-balanced 

operation thanks to their mechanical layout [8] is a highly appreciated feature of this machine. 

Contrarily, a weakness of the single screw configuration is related to the relatively high flow leakages 

between regions of the machine at different pressures. One way to overcome such an issue is to inject a 

certain amount of oil within the working fluid. The oil acts as a sealant agent between the various parts 

of the device, closing leakages paths, lubricating and, moreover, cooling the machine. It is then 

necessary to study how device working conditions are affected by the presence of such a “sealant”, in 

terms of efficiency thickness of the oil film and zones in which fluid can stagnate or affect the normal 

behaviour of the expander. 

Several studies regarding the development of dynamic models of oil injected and oil flooded ORCs 

are reported in literature, like [4] and [5], mainly with the objective of increasing the thermodynamic 

efficiency of the system. Stosic et al. [9] developed a model to account for the injection of oil during the 

working cycle of a twin-screw compressor, finding that oil injection ports position strongly affects 

power and volumetric efficiencies. Stosic et al. [10] ran several multivariable optimizations to design 

twin-screw compressors capable of obtaining better efficiencies than the ones designed using classical 

approaches: in their calculations, they calculated optimum conditions for oil flow and temperature, 

together with the angular position of the injector inside the casing, for a machine working with air and 

another using R134a. De Paepe et al. [11] showed that the atomization of oil inside a screw compressor 

permitted to cool down the device, but did not strongly affect its global performance, thus excluding 

this approach to obtain an isothermal compression. Ziviani et al. [12], when studying a micro-ORC 

whose expander has been adapted from a single-screw compressor, observed that by halving leakages 

and friction losses, isentropic efficiency could reach values of above 70 %: to reduce friction and 

leakages, one way is to increase the amount of oil circulating in the expander. 

To the writer knowledge, very few works have been done to analyze oil thickness on the different 

parts of the machine, and no one involved the analysis of a screw machine. For example, Minami et al. 

[13] compared oil film thickness for a rolling piston compressor when using R410a in place of R22 

refrigerant, while Hotta et al. [14] evaluated lubricant distribution inside a swash plate compressor by 

means of an experimental campaign, differently from the approach of Minami et al. [13], that was 

numerical. In both cases, they concluded that for a reliable operation during the whole machine life 

cycle, the oil film on the meshing parts has to remain constant and it must not break. The advantages of 

having a constant film height on the moving parts consists in the possibility of removing low friction 

materials from the contacting components, thus saving money and weight. 

Looking at ORC applications, depending on the refrigerant used in the cycle, several types of oil are  
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available. Provided that CFC and HCFC refrigerants are no more employed due to their non-zero Ozone 

Depletion Potential (ODP), ester-based oils are used when dealing with HFC refrigerants [15]. Since oil 

influences properties of the working fluid in which it mixes, different works has been done to investigate 

properties of such mixtures, such as the ones by Zhelezny et al. [16] or Marsh and Kandil [17]. For 

example, Zhelezny et al. [16] studied concentration dependencies for vapor pressure, density, surface 

tension and capillary constant for a R245fa-polyolester compressor oil mixture. The usefulness of this 

work is due to the fact that different oil concentration in refrigerant are used in the works reported in 

literature, e.g. Ziviani et al. [18] studied the behavior of a single-screw expander using, as working fluid, 

a mixture where lubricant concentration was 3 % vol., while Hiwata et al. [19] analyzed how the 

performance of a CO2-scroll compressor are affected by the injection of up to 25 % wt. of oil in the 

working fluid. 

In light of these considerations, in this work a 3D transient CFD simulation of an oil-injected single 

screw expander has been carried out. Experimental characterization of such machine has already been 

done by Ziviani et al. [12], thus data for mass flow rate, temperature and pressure values of the working 

fluid at the inlet and outlet sections of the device are known. Furthermore, the same expander has already 

been modelled by means of CFD techniques, when operating without lubricant oil [20]: both in that 

work and the present one, Simcenter STAR-CCM+® has been the software used to carry on the 

simulations. The present work reports two different analyses. The first analysis is related to the droplet 

and oil film evolution inside the inlet distributor (that is characterized by a particular shape due to 

position of the ports) according to different droplet size for the same gas and oil mass flow rate. The 

second analysis is related to a particular geometric condition for which the position and the shape of the 

screw determine the complete closure of both inlet ports. In this condition, the instantaneous mass flow 

rate operated by the expander is only due to leakages between screw, case and star wheels, and for this 

reason, the oil droplets are affected by different behavior compared to those highlighted in the first 

analysis. 

 

2.  Single-screw expander geometry and CFD model 

The machine considered in this work is an 11 kWe air compressor which is used as an expander for 

micro organic Rankine cycle (ORC) systems. Ziviani et al. [21] have already depicted in detail the 

dimensions of the device; however, for the purposes of this approach, the real geometry (Figure 1a) has 

been simplified in several details. All the bearings and main rotor and starwheels shafts, have been 

simplified, as well as the sealings; on the other hand, the external housing has not been changed, in order 

to predict flow behavior from the main inlet port of the machine to the screw, throughout the admission 

duct characterized by a curved shape. In addition, all the clearances have been modelled. According to 

Ziviani et al. [20], the clearances between the screw and case are in the range of (0.03 – 0.06) mm, while 

the clearances between the starwheel and the screw are in the range of (0.02 – 0.06) mm. 

Since, within the considered simulations, oil is introduced at the main inlet of the machine, the two 

injectors already present in the geometry have not been used. Instead, a cone injector has been modelled 

and placed coaxially to the main inlet (represented by the violet circle in Figure 1b), in order to uniformly 

spread lubricant particles in the bulk flow of gas. Following the gas path, the mixture (refrigerant gas 

and oil droplet) is then injected in the expansion chamber of the screw rotor by means of two admission 

ports, represented in Figure 2. As can be seen from Fig. 2, the two admission ports are not symmetric 

with respect to the screw rotor and for this reason, the oil droplet behavior and the oil film evolution 

over the entire admission duct will be different according to the side. According to the geometry, the 

upper port is closer to the main inlet section while, the gas path of the lower port is characterized by two 

narrow bends. 

2.1.  Numerical models 

To simulate the behavior of this kind of machine, different models have been used in STAR-CCM+®. 

While the capability of this software to deal with single-screw expander moving parts has already been 

proven (Ziviani et al. [20]) this time, while no rotating parts have been modelled by means of overset  
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Figure 1. Single screw expander: a) CAD model (external case, screw rotor and two starwheels) and 

b) fluid model (the main inlet port is highlighted in violet). 

 

 
Figure 2. Front view of the inlet duct with the upper and lower admission ports (cyan). 

 

meshes (screw rotor and starwheels are considered fixed), the presence of dispersed liquid lubricant 

droplets inside the bulk flow represented another challenge. To deal with this peculiarity, the working 

fluid has been modelled as real gas with Redlich-Kwong equation of state (EoS). The Eulerian approach 

has been coupled with Lagrangian one, to track oil droplets from the injection point to machine surfaces: 

since these droplets were predicted to form a film in the expander parts, also the fluid film and 

impingement models were enabled, together with the edge stripping one to take into account oil stripping 

from the different parts of the machine. In this paragraph, a short description of each of these models 

will be presented. 

Redlich-Kwong EoS is one of the several equations which have been proposed in the last decades to 

consider the behavior of gases in those regions of the p-v-T diagram characterized by temperatures near 

the critical one and pressures far from the critical value. In particular, this one models gas by modifying 

the ideal gas law with the introduction of two coefficients a and b, which are both functions of the gas 

temperature and pressure at its critical point. It has to be noticed that physical conditions of R245fa in 

our case are very close to the ideal gas behavior at the outlet of the machine (Z=1.01), while at the inlet 

a compressibility factor near 0.83 indicates that an ideal gas approach would not be appropriate. The gas 

bulk flow receives oil droplets which are modelled with a lagrangian approach, which is the most suited 

in case of dispersed droplets in a continuous phase. This approach allows the tracking of each single 

droplets, highlighting the single behavior in terms of velocity, dimension, temperature, etc. Since 

solving a set of equations for each droplet would be excessively time consuming, the CFD software 
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adopts a statistical approach in which all the droplets are grouped in clusters, which are representative 

group of droplets which share the same properties. For the sake of the analysis presented in this work, 

the so-called “two-way coupling” model has been enabled, in order to take into account the exchange 

of momentum and energy of the droplets with the working fluid, not only the vice versa. Furthermore, 

since it is expected that these droplets collide with expander surfaces, an impingement model had to be 

used. In the case of a wet boundary, the liquid particle transfers its mass, momentum and kinetic energy 

to the fluid film, making it necessary to evaluate the latter’s properties by means of the fluid-film (FF) 

model. Moreover, this is necessary because it is expected that, when reaches a sharp edge, liquid will 

drip on the underlying surfaces. 

The fluid film model solves equations for mass, momentum and energy conservation, together with 

the computation of the volume of liquid film in each of the cells of the numerical grid. The results are 

FF pressure, temperature, distribution and thickness. In our case, FF accumulates due to the impinging 

particles, while its thickness is reduced due to film stripping. This latter phenomenon is modelled thanks 

to the approaches proposed by Friedrich et al. [22] when considering the liquid film break-up criterion, 

and the one suggested by Maroteaux et al. [23] for calculating the diameter of droplets which result from 

stripping. Fluid will separate from an edge when the ratio of inertial force to the surface tension and 

gravitational force is greater than one; this ratio also affects the number of droplets which are ejected 

from the bulk flow, where their velocity is the same as the film one. All the simulations performed in 

the present work are realized by considering the conjugate heat transfer between gas, oil droplets and 

oil film. The walls are considered adiabatic. 

In Table 1, the values of the materials properties and boundary conditions defined in the current work 

are reported. The transient simulation was performed by imposing a time-step of 5e-7 s that corresponds 

to a maximum Courant number of 1. To model turbulence, the two-equations, shear-stress transport 

(SST) k-ω model of Menter [24] has been adopted. Oil is introduced in the numerical domain with an 

injector modelled as a solid cone, which means that lubricant was injected in the form of uniformly 

distributed parcels from the base of the cone in seven random directions. This configuration has been 

considered because premixing oil and refrigerant upstream the expansion chamber is the simplest way 

of retrofitting a pre-existing machine with a lubrication system, since the alternative is to place an 

injector near the meshing zone of each starwheel with the screw. The temperature of oil has been chosen 

to be lower than the refrigerant one in order to take into account the possible lowering of machine 

components temperature due to the impinging fluid. To initialize lubricant film calculations, a height of 

1 µm has been imposed on all the boundaries which were expected to be covered with oil, namely the 

inlet ducts, the starwheels and the screw. The minimum sharp edge angle at which oil is permitted to 

strip has been set to 10 degrees. The lubricant properties were defined as functions of temperature, using 

data presented by Zhelezny et al. [16] and reported in the oil datasheet. Relations for the temperature-

varying properties are listed below. 
 

ν =1.5748e39 T exp(-17.258) 
 

𝜌 =3.5987e3 T exp(-0.23055) 
 

𝜎 = 2.2684 T exp(-0.77639) 
 

𝐶 =  6.7533𝑒-2 𝑇exp(0.57540) 
 

Table 1. Model properties and boundary conditions. 

Properties Value Properties Value 

R245fa Inlet Temperature [K] 398.05 Oil Droplets Diameter [µm] 0.5 – 50 

R245fa Dynamic Viscosity [Pa s] 1.3723e-5 Oil Inlet Velocity [m/s] 4 

R245fa Specific Heat [J/kg K] 1102.3 Injector Cone Angle [rad] 2 

R245fa Thermal Conductivity [W/m K] 0.021519 Injector Streams [-] 7 

Oil Inlet Temperature [K] 340 Engaging Ratio [-] 11/6 
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2.2.  Mesh 

Two numerical domains have been meshed according to the analysis type. As mentioned, the first 

analysis is devoted to the comprehension of the oil droplet and film behavior inside the inlet distributor. 

The numerical domain (reported in Fig. 2) was discretized by means of half million hexahedral elements 

with dimensions spanning from 0.5 to 2.0 mm. The numerical grid realized for the inlet distributor is 

reported in Fig. 3a. In relation to the second analysis, the numerical domain (reported in Fig. 1b) was 

discretized by means of hexahedral elements, with dimensions spanning from 0.01 mm to 2.0 mm, as 

reported in a previous work [20] in order to account for the gaps between screw rotor, case and 

starwheels. This led to the generation of a near two-million-elements mesh, which has guaranteed a good 

compromise between computational and solution accuracy. The present meshes are chosen after a grid 

sensitivity analysis. In Figs. 3a-b, both a section of the domain, and a representation of the numerical 

grid on the moving parts of the machine are shown. 

The combination between elements dimensions and flow characteristics led to y+ values in the range 

0.5-100; this fact suggested to choose an all-y+ approach, leading to the solution of the viscous sub-layer 

for those value of y+ <1 and the use of wall functions for values outside the transition zone. 

 

3.  Results 

3.1.  Inlet distributor analysis 

This analysis was carried out in order to highlight the different behaviors which affect the oil droplets 

characterized by different diameter. In particular, three diameters have been considered in the range of 

(0.5 – 50) µm. This range is selected according to the literature values [25, 26], and in addition, this 

wide droplet size range is useful for performing a detailed sensitivity analysis. In the present analysis, 

the mass flow rate at the main inlet is imposed equal to 0.3 kg/s according to the experimental results 

reported by Ziviani et al. [12], while, an outlet static pressure equal to 1.3 MPa is imposed on both inlet  

 

 
Figure 3. Numerical grids: a) on distributor duct, b) section plane perpendicular to wheels axes and c) 

on rotating parts. 
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ports. At the same time, the oil mass flow rate was imposed equal to 0.003 kg/s that corresponds to the 

10 % in weight. This weight rate is imposed according to the analysis reported in [4]. The oil droplets 

were injected after the resolution of the flow field in order to realize a transient analysis of the oil film 

evolution over the time. 

According to these conditions, Table 2 reports the results obtained for the three analyses according 

to the three particle diameters. As shown in the table, the number of droplets at the inlet ports of the 

screw changes according to the droplet diameter. The particular shape of the inlet distributor determines 

several differences of flow field over the flow path. Considering the streamlines reported in Figure 4, it 

is possible to see that the lower inlet port is affected by eddy structures due to the bent shape of the duct, 

while the upper port is located immediately downstream of the of the high-radius 90° curve (see Fig. 2 

for completeness). The deviation upstream the lower port, influences the droplets trajectories and, for 

bigger particles, the droplet inertia determines huge deviations from the gas streamlines, as reported in 

Figure 5. For this reason, the biggest droplets are not able to reach the lower port. In the case of smaller 

droplets, the trajectories (see Fig. 5a-b) appears more similar to the gas streamlines (see Fig. 4) and in 

turn, the oil droplets are able to reach the upper and lower port. 

In an actual application, the oil injector is responsible of a certain droplet diameter distribution (see 

for example [25] and [26]) and, in the light of the present results, the proper analysis of the droplet 

distribution, the location of the injector and the inlet distributor shape is needed. In a general way, and 

in the presence of a general droplet diameter distribution, smaller droplets are able to follow the gas 

streamlines, but they are responsible only for a minimum part of the oil mass flow rate. This fact could 

generate several issues related to the friction losses and wear in a specific region of the machine. 

At the inlet ports of the screw, not only the oil droplets are responsible of the lubricant action of the 

 

Table 2. Oil droplet analysis for the inlet distributor. 

Oil droplet diameter 

[µm] 

Oil droplets @ upper port 

[%] 

Oil droplets @ lower port 

[%] 

0.5 0.99 0.03 

5.0 3.39 0.05 

50 5.69 0.00 

 

 
Figure 4. Gas streamline in the inlet distributor. 

 

 
Figure 5. Oil droplet trajectories: a) 0.5 µm b) 5.0 µm and c) 50.0 µm. 



8

1234567890‘’“”

International Conference on Screw Machines 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 425 (2018) 012001 doi:10.1088/1757-899X/425/1/012001

oil on the screw walls but also the oil film. This is generated in the inlet distributor by the oil droplets, 

and moves towards the ports, thanks to the gravity action and to the drag action provided by the gas. 

Considering the snapshots reported in Figure 5, the trajectories of the oil droplets released by the injector 

at the main inlet are clearly visible. In Figure 6, the oil film distribution in the inlet distributor are 

reported. The oil film is representative of 0.4 s of oil injection. It is clearly visible how the oil film grows 

in the front of the injector and moves down, according to the distributor walls. At the screw inlet ports, 

the oil film strips and it is dragged towards the screw. In the next section, an analysis related to the 

interaction between oil film and the rotor screw will be reported in detail. 

3.2.  Screw rotor interaction analysis 

This second analysis is carried out in order to highlight a particular geometric condition for which the 

position and the shape of the screw determine the complete closure of both inlet ports. As mentioned, in 

this configuration, the instantaneous mass flow rate that flows over the single screw expander is only 

due to leakages between screw, case and star wheels. Therefore, the oil droplets are affected by different 

behavior compared to those highlighted in the first analysis. In the present analysis, the static inlet 

pressure equal to 1.3 MPa is imposed at the main inlet, while a static pressure equal to 0.3 MPa is 

imposed at the single screw outlet in agreement with Ziviani et al. [12]. In addition, the rotational 

velocity is applied to the screw and starwheel walls equal to 3000 rpm and 1636 rpm respectively. In 

the same way of the first analysis, the oil droplets were injected after the resolution of the flow field in 

order to realize a transient analysis of the oil film evolution over the time. The relative position of the 

screw rotor and the upper port is reported in Figure 7 (the upper port trace is depicted in red). In this  

 

 
Figure 6. Oil film on the inlet distributor walls (0.4 s). 

 

 
Figure 7. Relative position between inlet port (in red) and screw: the screw thread totally occludes the 

inlet port. 
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configuration, the inlet port is affected by a not negligible stagnation and the consequent back pressure. 

In the following, the oil film thickness variation over the time, pressure and velocity fields are proposed 

with the aim of highlight the fluid dynamic phenomena given by the contemporary presence of real gas 

expansion and fluid film behavior. 

The results reported here refer to a transient analysis of 0.4 physical seconds. This limited period was 

sufficient to obtain information about oil distribution and its effect on the flow field on the inlet 

distributor and on the screw rotor walls. In Figure 8, the oil film thickness on the screw walls, obtained 

with oil droplet of 50.0 μm, is reported. In addition, the position of the upper port is highlighted in pink. 

As can be seen from Figure 8, on the lower part of the screw walls the oil film is thicker and involves 

the screw groves in the proximity of the starwheels surfaces, even if, the maximum thickness seems to 

be located downstream the engagement zone. This fact is due to the oil droplet trajectories. As reported 

in Figure 9, the oil droplets escape towards the lower part of screw rotor according to the pressure 

gradient. As can be seen in Figure 10, the inlet pressure characterizes only the screw region immediately 

downstream of the upper port (the red region with the triangular shape), while lower pressure values 

(the discharge pressure of the single screw expander) characterizes the other screw regions. 

Taking into consideration the oil film distribution, reported in Figure 8, and the pressure field 

reported in Figure 10, another important consideration can be done. Part of the oil droplets is dragged 

towards the rear part of the screw due to the difference of pressure between the incoming working fluid 

and the lower pressure existing in that part of the domain. Looking at Figure 8, which depicts oil 

thickness, it is apparent that the two phenomena are related. In that zone, the height of the lubricant film 

is comparable with respect to the entire domain. As depicted in Figure 10, the inner screw region (in the  

 

 
Figure 8. Oil film thickness on the screw walls (the upper port is highlighted in pink). 

 

 
Figure 9. Oil droplet trajectories on the single screw expander. 
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Figure 10. Pressure field on the single screw expander. 

 

proximity of the inlet port) is characterized by huge pressure gradient (equal to about 1.3 MPa) generated 

by the effect of the gaps between screw and casing and the stagnation provided by the screw thread. 

This is confirmed by looking at Figure 11, in which the gas streamline colored by velocity are tracked 

over the single screw expander. Looking at the upper port, the leakage flow of refrigerant is particularly 

strong immediately downstream the admission port, giving an opposite direction with respect to the 

usual one. When the mixture oil-refrigerant exits the admission port, it is split in two directions, 

upstream and downstream the position of the port. 

For the present machine setup, in this localized region, the gap between the casing and the screw 

determines a not negligible leakage. The combination of this radial gap and the pressure field (see Figure 

10) determines a relevant oil stagnation. On the other hand, this stagnation causes a reduction of nearly 

60 % of the gap between the screw and the casing (calculated considering the height of the oil film with 

respect to the total clearance of roughly 1 mm), thus reducing leakages in the rear part of the machine. 

Unfortunately, by injecting the oil at the inlet port, this beneficial effect is not obtained in other zones 

of the screw, or in the meshing area between this component and the starwheels, since oil drips from the 

inlet duct and it is scavenged only in one direction. This effect is accented by the distribution of the 

lubricant on the inlet distributor (see for example Figure 6). 
 

 
Figure 11. Gas streamline over the single screw expander colored by velocity. 



11

1234567890‘’“”

International Conference on Screw Machines 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 425 (2018) 012001 doi:10.1088/1757-899X/425/1/012001

By means of transient simulation, it is possible to discover the oil film progression over the time. 

Figure 12 depicts different frames, according to the physical time reported for each instant, of the oil 

film thickness, starting from the initial formation in front of the injector, to the final stripping on the 

screw rotor walls. At the beginning, the oil film assumes a circular shape according to the injector shape 

(cone injector) and it appears not equally distributed with respect to screw mid-plane. This result is 

probably due to the effect of the leakages that affects this particular geometric condition of the single 

screw expander. 

Soon after, the oil film flows towards the upper port (see Figure 2) whose feeding duct is 

characterized by higher slope than the other one. Therefore, the action of gravity force is predominant 

over the drag force provided by the incoming gas. For the same reason, the oil droplets are not able of 

being distributed over the entire duct surfaces and they accumulate mostly in the lower surfaces. When 

the oil film reaches the admission port, it is split in two ways: one in the lower part of the screw rotor 

and the other one downstream the inlet port. 

Taking into consideration the oil film thickness (see Figures 8 and 12), in the presence of narrow 

passages, and/or in the presence of high gas velocity, the reduction of the passage area due to the oil 

film, could generate a sort of blockage with consequent increment of pressure losses. This means that 

the position of the injector, the oil flow rate and the machine configuration play a double role: on one 

hand, an increase in the machine efficiency by reducing the friction losses and flow leakages can be 

expected, but on the other they can have a detrimental effect on machine performance by reducing the 

flow passage area and causing windage losses. 

 

 
Figure 12. Oil film thickness time evolution from the inlet to the screw rotor. 
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4.  Conclusions 

In the present paper, the numerical simulation to study the effects of oil injection on the operating 

conditions of an actual single-screw expander has been carried out. The lubricant injector has been 

placed at the inlet port of the machine, with the oil driven by the R245fa to the expansion chamber. 

A two-step analysis has been carried out. Firstly, the oil droplets trajectories in the inlet distributor are 

investigated, as well as the oil film that grows on the wall as oil keeps on impinging. Secondly, the same 

analysis is carried out on the entire machine, freezing the rotors in the instant where both the inlet ports 

are completely shut. In the first analysis, the effect of three different sizes of droplets has been considered 

(0.5 µm, 5.0 µm, and 50.0 µm), while for the entire machine, only the 50.0 µm droplets have been 

simulated. 

From the first analysis, it is clear how the particle size affects the overall presence of oil inside the 

screw machine. Particularly, the high inertia of bigger particles tends to make them impinge on the inner 

walls of the distributor. Only a small amount of the droplets is able to make its way to the inlet upper 

port without being entrained in the thin fluid film that flows over the walls. 

In light of this is mainly the fluid film that enters the working chamber, being stripped immediately 

downstream the inlet port. Such film is mainly transported towards the rear part of the screw, making 

the lubrication of the screw ineffective in the configuration under analysis. 

From this work, it is clear that the smallest droplets have the higher probability to reach the actual 

working chamber, without impinging on the walls. Therefore, an efficient lubrication is obtained by 

decreasing droplets diameter (choosing an oil with lower viscosity and surface tension or by mounting 

a nozzle with a different geometry) or adopting a different configuration for the injectors (e.g. by placing 

them in a position where lubricant drops on the meshing pair, without being dragged by refrigerant 

flow). The simulation of a fully transient, dynamic mesh simulation is to be considered the next step of 

this analysis, showing the path the fluid film follows when the dynamic of the machine is considered. 
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