
IOP Conference Series: Materials
Science and Engineering

     

PAPER • OPEN ACCESS

Application of an advanced necking criterion for
nonlinear strain paths to a complex sheet metal
forming component
To cite this article: Klaus Drotleff and Mathias Liewald 2018 IOP Conf. Ser.: Mater. Sci. Eng. 418
012041

 

View the article online for updates and enhancements.

You may also like
Time evolution photoluminescence studies
of quantum dot doped ferroelectric liquid
crystals
A Kumar, S Tripathi, A D Deshmukh et al.

-

Pico-ampere current sensitivity and CdSe
quantum dots assembly assisted charge
transport in ferroelectric liquid crystal
Dharmendra Pratap Singh, Yahia
Boussoualem, Benoit Duponchel et al.

-

Fabrication of vertical alignment in
ferroelectric liquid crystals for display
application
Hirokazu Furue, Toshiki Horiguchi, Miyuki
Yamamichi et al.

-

This content was downloaded from IP address 18.222.83.185 on 12/05/2024 at 05:36

https://doi.org/10.1088/1757-899X/418/1/012041
https://iopscience.iop.org/article/10.1088/0022-3727/46/19/195302
https://iopscience.iop.org/article/10.1088/0022-3727/46/19/195302
https://iopscience.iop.org/article/10.1088/0022-3727/46/19/195302
https://iopscience.iop.org/article/10.1088/1361-6463/aa7ae5
https://iopscience.iop.org/article/10.1088/1361-6463/aa7ae5
https://iopscience.iop.org/article/10.1088/1361-6463/aa7ae5
https://iopscience.iop.org/article/10.7567/JJAP.53.09PC03
https://iopscience.iop.org/article/10.7567/JJAP.53.09PC03
https://iopscience.iop.org/article/10.7567/JJAP.53.09PC03
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjssLHIZNAlSivff1tnz_KUzgQeiA4BSm-ekuS8byU7Do6QiqhykZm6uJHv7UV5Gkvou_YxDYlztp-ktyRvCq3SznwYwxK_gv0wFHPPMxH6QDOvT5VzfK61eEGV4ZTuBbXQe8p_wq7e_CdbEy5HzNn2Z_uWVkFS9MkxRAlo3DZaLwaWFvdmadnFq1F-AZWqC6yfzWd5ccNV3Q5h-yjG9Fu3vQ6LaScEV39lc2mSQxgdLNuQhuMkjejgy_KVP7RazzWYFuj2ZXVWlFCp3vdY3ml1gMwiQ59n8gi90MJVc6zLNkQJO_w7TgNNYv60AYefVURZPShvYdyaRrfxL0ctkAWS6zLdnn2Q&sig=Cg0ArKJSzA7QWUkBOagQ&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

International Deep Drawing Research Group 37th Annual Conference IOP Publishing

IOP Conf. Series: Materials Science and Engineering 418 (2018) 012041 doi:10.1088/1757-899X/418/1/012041

Application of an advanced necking criterion for nonlinear 

strain paths to a complex sheet metal forming component 

Klaus Drotleff, Mathias Liewald 

Institute for Metal Forming Technology, University of Stuttgart, Holzgartenstr. 17, 

70174 Stuttgart, Germany 

klaus.drotleff@ifu.uni-stuttgart.de 

Abstract. For meeting time, cost and quality targets in industrial sheet metal forming processes, 

correct formability prediction in a very early project stage has become a crucial factor. It is well 

known that the conventional Forming Limit Curve (FLC), which is most commonly used for this 

purpose, is only valid for linear strain paths. Yet, in most industrial sheet metal components, the 

occurring strain paths are nonlinear. Due to this fact, most users apply a safety margin of 10 to 

20% when using the Forming Limit Diagram for formability prediction resulting in higher 

process robustness, but also increasing component weight and material costs in production. 

Reasons for the broad application of the FLC in industry is the simple experimental 

determination of the curve as well as the easy implementation in finite element post-processing. 

In this paper, an advanced failure criterion for nonlinear strain paths is presented and applied to 

a deep drawn door inner part. The investigated deep drawing specimen was manufactured using 

the aluminium alloy AA6014 T4 and the dual phase steel DP600. The sheet thickness was chosen 

to be closely to 1.0 mm. The calibration procedure of the criterion for arbitrary sheet materials 

is based purely on uniaxial tensile test data. Experiments for the calibration of the model as well 

as the application of the criterion to an experimental stamping part will be explained in the paper. 

Finally, a comparison of the newly presented model with conventional formability evaluation 

using standard FLC will be given. 

1.  Introduction 

The design of modern sheet metal components is often very complex and modern high strength steel 

and aluminium alloys used for these components are often more difficult to form than conventional deep 

drawing steels. After deep drawing the major part geometry in the first operation, trimming, redrawing 

and restriking operations are often necessary in order to achieve the desired part geometry. To reduce 

time to market, engineering and tool manufacturing costs as well as revision cycles in tool try-out, tool 

designs are usually verified before production by using finite element simulation of the forming. To 

keep computing costs at an acceptable level, the models used for feasibility estimation usually bear 

simplifying assumptions. Forming tools are considered to be rigid during the forming process [1], 

forming behaviour of the blank material is modelled using an extrapolated yield curve from uniaxial 

tensile test data and friction is described using Coulomb’s law, for example. Advanced material models 

considering the effect of anisotropy as well as several other important effects like kinematic hardening, 

strain rate dependence or draw bead plastification are necessary for realistic forming simulation [2]. For 

a correct estimation of feasibility, it is also necessary to have exact knowledge about the onset of 

localised necking and the beginning of rupture for a given sheet material. Since the 1960s, the forming 

limit curve (FLC) as proposed by Keeler et al. [3] has become an industry standard for this procedure. 

http://creativecommons.org/licenses/by/3.0
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Experiments for measuring critical strain values corresponding to the onset of localised necking have 

been standardised in ISO 12004-2 [4].  Testing setups as proposed by Nakajima or Marciniak produce 

idealised strain paths enabling the determination of the onset of localised necking. Strain measurement 

is usually done using digital image correlation systems. These optical measurement devices also allow 

the use of advanced time dependent methods for determination of the onset of localised necking. 

Since the works of Müschenborn and Sonne [5], it is well known that forming history influences the 

beginning of localisation in the sheet metal forming process and that the conventional forming limit 

curve does not take these effects into account. Many advanced models have been presented for improved 

failure prediction. Generalized Forming Limit Concept (GFLC) by Volk [6–8], Modified Maximum 

Force Criterion (MMFC) with many different extensions by Hora [9–11] and forming limit stress curves 

as proposed by Stoughton [12–14] are some of the very well-known approaches for improved prediction 

of localised necking under arbitrary loading conditions. Thus, increased prediction quality often comes 

with increased time and characterisation costs. To overcome this problem and to achieve good feasibility 

prediction with a low number of experiments, a new model based on the approaches presented in [15–

17] will be presented in this paper. The model and the calibration procedure are described in the 

following chapter. Nonlinear strain paths inevitably occur in most sheet metal forming processes. The 

nonlinearity, which can be described by the change of the ratio of minor to major strain β = ∆φ2/∆φ1 

during the forming process, is usually rather small, being a value of less than 5%. Furthermore, most 

nonlinear strain paths do not come close to critical strain combinations of the forming material. In these 

cases, the conventional forming limit curve as described in the ISO standard seems to provide a 

reasonably good feasibility prediction. In tough cases, however, nonlinear strain paths with stronger 

nonlinearities and critical strain values do occur during manufacturing of sheet metal components, hence 

leading to a difficult formability prediction using the conventional FLC. 

2.  Model for prediction of localised necking for arbitrary strain paths 

The model presented in this paper is purely based on tensile test data and a modified version of the FLC 

calculation approach presented by Abspoel et al. in 2013 [18]. In order to take into account the effect of 

nonlinear strain paths, additional tensile tests of pre-stretched specimen are conducted. For full 

calibration of the model, 36 tensile tests according to ISO 6892 [19] are needed. The calibration 

procedure includes tensile tests in 0°, 45° and 90° to the rolling direction, which are usually conducted 

during the preparation of material cards for forming simulation anyway. Depending on the maximum 

uniform elongation of the material, a uniaxial pre-stretching up to 15% effective strain is carried out 

prior to uniaxial tensile tests to calibrate the model. The pre-stretching is conducted using a conventional 

uniaxial tensile testing machine with rectangular specimen from which secondary “dog bone” specimen 

according to ISO 50125 can be prepared for further experiments. In [20] the experimental procedure is 

described in detail. The experimental setup is summarised in table 1. 

 

Table 1. Overview of number of experiments necessary for calibration of the proposed model. 

Amount of pre-stretching [von Mises effective strain] # of sample geometries 

0% 

3 for each rolling direction (0°, 45°, 90°) 
5% 

10% 

15% 

#Total specimen tested 36 

 

From these tests, a set of material data is determined, especially including strain dependent material 

parameters like Lankford coefficients (r-values) in three different directions, hardening exponent n, 

maximum uniform elongation Ag and maximum elongation A80. The tests are carried out using a 

conventional “dog bone” specimen as described in DIN 50125. Since uniaxial tensile tests in three 
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different directions are conducted anyway, for the determination of yield locus and yield curve, the 

number of extra tensile tests required by the proposed model  to predict necking for arbitrary strain paths 

is only 27. 

2.1.  Setup of the nonlinear FLC criterion 

The strain-dependent material parameters determined in the tensile test of pre-stretched specimens show 

significant dependence on the amount of pre-strain. Based on the methods described in [5,17,21], 

nonlinear strain paths can be simplified by consecutive linear sections. Combining these linear sections 

and using the von Mises effective strain as a measure for prior deformation, an improved prediction of 

material behaviour can be achieved. From [22] and [23] it can be derived, that the hardening exponent, 

Lankford coefficient and fracture strain have a significant influence on the FLC. Figures 1 and 2 show 

the change of Lankford coefficient r, hardening exponent n and fracture strain A80 for increasing amounts 

of pre-strain. 

 
Figure 1. Influence of pre-stretching on resulting Lankford coefficients, hardening exponents and 

fracture strains of AA6014 T4. 

For both materials investigated, the first five percent of pre-stretching is observed to cause an almost 

common trend of increase in Lankford parameters and reduction of hardening exponent and fracture 

strains on the other hand. Lankford coefficients, hardening values and fracture strains were determined 

as described in ISO 6811. 

 
Figure 2. Influence of pre-stretching on resulting Lankford coefficients, hardening exponents and 

fracture strains of DP600. 

Beyond the 5% pre-stretching, figures 1 and 2 demonstrate further dependence but in a different 

manner based on the investigated material. The complicated trend may originate from the dual-phase 

nature of DP600. As shown in figures 1 and 2, material properties change significantly within a range 

of 0 and 10% pre-stretching applied to the tensile test specimens. It is expected that the changes in these 

strain dependent material parameters are directly influencing the shape and position of the FLC. Based 

on this observation, the formulations used for calculation of the FLC points by Abspoel et al. [18] have 

been adapted as shown in table 2. The formulas presented in table 2 can be calculated using fracture 

strain value 𝐴80, r-value in the desired rolling direction of the sheet material, sheet thickness t and 

hardening exponent n. The prediction of changes in the shape of the FLC is enriched by an additional 

formula providing a fifth point between the pure uniaxial and the plane-strain point. Since the calculated 

FLCs are afterwards compared to experimental data from Nakajima-tests, the formulas have been 
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modified to take the biaxial shift of the plane-strain point into account. The transformation of FLCs with 

biaxial shift from Nakajima-test to FLCs from the Marciniak-test can be conducted using the methods 

presented by Leppin et al.[24]. 

 

Table 2. Mathematic model used for calculation of FLCs for arbitrary strain paths. 

FLC point Formulation 

Uniaxial 

point 

𝜑1𝑈𝐴
=

(1 + 0.787r(φ)0.701)((0.0626 𝐴80
0.567 + (t − 1)(0.12 − 0.0024 𝐴80)

√1 + (0.797𝑟(𝜑)0.701)2
 

𝜑2𝑈𝐴 = −
(0.626𝐴80

0.567 + (t − 1)(0.12 − 0.0024𝐴80)0.797𝑟(𝜑)0.701

√1 + (0.797𝑟(𝜑)0.701)2
 

Intermediate 

uniaxial 

point 

𝜑1𝐼𝑀𝑈
=

(797r(φ)0.701)((0.0626 𝐴80
0.567 + (t − 1)(0.12 − 0.0024 𝐴80)

√1 + (0.797𝑟(𝜑)0.701)2
 

𝜑2𝐼𝑀𝑈 = −
(0.626𝐴80

0.567 + (t − 1)(−0.0024𝐴80)0.01𝑟(𝜑)0.701

√1 + (0.797𝑟(𝜑)0.701)2
 

Plane-strain 

point 

𝜑1𝑃𝑆 = 0.0084𝐴80 + 0.0017𝐴80(𝑡 − 1) 

𝜑2𝑃𝑆 = 0.0183 

Intermediate 

biaxial point 

𝜑1𝐼𝑀 = 0.0062𝐴80 + 0.18 + 0.0027𝐴80(𝑡 − 1) 

𝜑2𝐼𝑀 = 0.75(0.0062𝐴80 + 0.18 + 0.0027𝐴80(𝑡 − 1)) 

Equibiaxial 

point 

𝜑1𝐵𝐴 = 𝜑2𝐵𝐴 = 0.00215𝐴80 + 0.25 + 0.00285𝐴80𝑡 

𝜑2𝐵𝐴 = 0.00215𝐴80 + 0.25 + 0.00285𝐴80𝑡 

Figures 3 and 4 compare the calculated and experimentally determined FLCs for the dual phase steel 

and the 6014 aluminium alloy respectively. The formulations from table 2 then have been adapted to 

regard the effect of nonlinear strain paths indirectly defined by changing r-values, hardening exponent 

and maximum elongation.  

 
Figure 3. Displacement splines for uniaxial-, 

plane-strain and biaxial FLC point in comparison 

to experimental data. 

 
Figure 4. Displacement splines for uniaxial-, 

plane-strain and biaxial FLC in comparison to 

experimental data. 

 

For this purpose, parameters A, B, C and D of so-called polynomial displacement functions are fitted 

to the experimental material data and given in table 3. The mathematical formulation is given in equation 
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1. Parameter D is chosen to be equal to the major strain value of the standard material without pre-

stretching. Using these displacement functions for the uniaxial-, plane-strain and biaxial point, a three-

dimensional failure surface is generated to shift the conventional 0-FLC. 

𝜑1 = 𝐴𝜑eff
3 + 𝐵𝜑eff

2 + 𝐶𝜑eff + 𝐷 (1) 

 

Table 3. Parameters of calculated displacement functions for uniaxial, plane-strain and biaxial FLC 

point. 

Parameter Uniaxial point Plane-strain point Biaxial point 

 DP600 AA6014 DP600 AA6014 DP600 AA6014 

A -0.009 30.75 -28.61 -37.80 -22.71 0 

B -1.40 -8.16 9.815 14.97 4.908 -1.869 

C -0.649 -0.282 -1.418 -2.044 -0.496 -0.018 

D 0.389 0.314 0.195 0.208 0.353 0.307 

2.2.  Visualisation of the calculated failure surface for arbitrary strain paths 

Resulting splines in comparison to experimental data are shown in figures 5 and 6. The shape of the 

FLC changes with increasing pre-stretching of the material DP600 and AA6014. The FLCs are 

calculated using the formulations given in table 2 and swept using the displacement function from 

equation 1. The displacement function is applied only to the major strain values of the formulas for FLC 

calculation. Major strain values for the five FLC points described in table 2 are therefore calculated 

according to equation 2. 

𝜑1_nl = 𝜑1 − (𝜑1𝑃𝑆 − (𝐴𝜑eff
3 + 𝐵𝜑eff

2 + 𝐶𝜑eff + 𝐷)) (2) 

The minor strain values of the five FLC points calculated do not change significantly with increasing 

amount of pre-strain. During experimental testing, it can be seen that the uniaxial, plane-strain and 

biaxial points are changing their position with increasing level of pre-stretching. 

 

 
Figure 5. Displacement splines for uniaxial-, 

plane-strain and biaxial FLC point in comparison 

to experimental data. 

 
Figure 6. Displacement splines for uniaxial-, 

plane-strain and biaxial FLC in comparison to 

experimental data. 

3.  Application to experimental stamping of a door inner component 

After calibration of the model for AA6014 and DP600 materials, a finite element forming simulation 

for a scaled down version of a door inner component was conducted. Material cards for AA6014 and 

DP600 with sheet thicknesses of 1.04 mm and 0.98 mm were set up using data from uniaxial tensile 

tests, bulge tests and FLC data from conventional Nakajima-experiments. The yield curve extrapolation 

according to Hockett-Sherby [2] was used for both materials. The yield locus of DP600 material was 
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modelled using Barlat Yld89 [25] function, as given in AutoForm R7. For aluminium alloy AA6014, 

the BBC yield criterion was applied [2]. The material parameters used in the forming simulation are 

summed up in the following table 4. The friction coefficient was set to 0.15 and kept constant throughout 

the forming simulation to resemble commonly used values in industrial application. The blankholder 

force for DP600 alloy during forming simulation as well as during experimental stamping was chosen 

to be 750 kN. For the aluminium alloy AA014, a blankholder force of 350 kN was applied. Blank size 

and position in the drawing tool were the same for both materials. Lubrication of DP600 was chosen to 

be 4 g/m2. The aluminium alloy was formed using pre-lubrication agents applied to the blank. 

Table 4. Material parameters used in forming simulation. 

Parameter DP600 – thickness 0.98 mm AA6014 – thickness 1.04 mm 

sat 734.3 MPa 308.5 MPa 

i 231.9 MPa 120.9 MPa 

n 0.198 0.244 

r0 0.732 0.78 

r45 0.809 0.49 

r90 0.876 0.68 

It is well known that different material models have a huge influence on results of forming 

simulation. Therefore, a simulation study was carried out in order to determine the influence of the yield 

locus description on resulting formability. The forming simulations were validated by comparing draw-

in and sheet thickness in several characteristic points. Since there are about 173000 elements in the 

forming simulation of the door inner component, the strain linearity function of AutoForm R7 has been 

applied to determine critical nonlinear strain paths. This is done by checking the -values of each 

element during the forming process. If this value is above 0.02, resembling a change in the strain path 

of more than 10%, the element is marked as nonlinear and the IFU-FLC-Criterion is applied. 

Failure prediction was carried out comparatively using conventional FLC according to ISO 12004-2 

standard as well as the IFU-FLC-Criterion described in section 2 of this paper. If the conventional FLC 

according to the ISO standard is applied, the onset of localised necking is predicted in the areas shown 

in the figures 7 and 8 for the aluminium and the DP alloy. Simulation results along with the nonlinear 

strain paths are marked with red dots.  

 
Figure 7. Resulting forming simulation of 

DP600 alloy and critical necking areas (red dot). 

 
Figure 8. FLD of door inner stamping for DP600 

and critical nonlinear strain path marked in red. 

 

From figures 7 and 8, it can be seen that if the conventional FLC is used, risk of necking is predicted 

in the left radius of the DP600 component (marked with a red dot in figure 7). Using the FLC determined 
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from IFU-FLC-Criterion as shown in figure 8, the onset of localised necking for this area is predicted 

about 2 mm before the bottom dead centre. Results of forming simulation of AA6014 alloy are shown 

in figures 9 and 10. Using standard FLC, the forming simulation of AA6014 only predicts a very small 

area with risk of necking in the left lower radius of the component at a maximum drawing depth of 

95 mm. The IFU-FLC-Criterion on the other hand predicts necking at a drawing depth of 92 mm. 

 

 
Figure 9. Resulting forming simulation of 

AA6014 alloy and necking area (red dot). 

 
Figure 10. FLD of door inner stamping for AA6014 

and critical nonlinear strain path marked in red. 

4.  Comparison with experimental data 

From the experimental forming of the door inner component it becomes obvious that localised necking 

occurs very closely to the areas predicted by the IFU-FLC-Criterion. In order to compare experimental 

and simulation results, the drawing depth at the onset of the localised necking, the necking area in the 

formed component and the draw-in are compared. Table 5 shows pictures of the formed door inner parts 

made of DP600 and AA6014 alloy. The maximum drawing depth of the component is 95 mm. The 

failure position of the drawn part was the lower left area independent of the alloy used. The critical 

drawing depth determined from forming experiments was 94.5 mm for DP600 and 92 mm for AA6014 

alloy. In table 6, a comparison of the calculated and experimental critical drawing depth using standard 

FLC and IFU-FLC-Criterion are given. 

Table 5. Experimental results of stamping door inner components with DP600 and AA6014 alloy. 

Investigated areas marked with red dots and circles. 

DP600 stamping with necking area AA6014 stamping with crack in lower left radius 
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Table 6. Comparison of critical drawing depth for the onset of localised necking. 

Criterion DP600 – thickness 0.98 mm AA6014 – thickness 1.04 mm 

Standard FLC No necking at 95 mm drawing depth No necking at 95 mm drawing depth 

IFU-FLC-Criterion Necking at 93 mm Necking at 92 mm 

Experiment Slight necking at 94.5 mm Fracture at 95 mm 

5.  Conclusions and outlook 

The determination of localised necking in complex sheet metal forming operations is crucial for 

achieving high process robustness and part quality within constraints of time and cost. In this paper, an 

advanced failure model for prediction of localised necking for arbitrary strain paths is presented. The 

model is purely based on data determined in uniaxial tensile tests and can be calibrated for any sheet 

metal material with only 36 tensile test specimen. The mathematical model presented is capable of 

predicting five FLC points for onset of localised necking and taking the influence of changing material 

properties due to pre-stretching into account. In this paper, the presented model is calibrated for the 

aluminium alloy AA6014 and the dual phase steel alloy DP600. Validation of the presented model is 

done using an experimental inner door stamping where critical drawing depth at necking and fracture 

was experimentally determined and compared to predicted critical drawing depths in sheet metal 

forming simulation. As described in section 4 of this paper, the predicted drawing depths for the steel 

and aluminium alloy are in good agreement with the experimental results. Using the advanced necking 

criterion presented in this paper forming simulation can be improved. 

In further research projects, the application of the presented criterion to multi step forming operations 

will be investigated as well as the application of this criterion to further sheet metal materials like 

conventional deep drawing steels and 5xxx aluminium alloys. The implementation of the presented 

criterion to commercial finite element forming software can be done very easily due to the fact that the 

criterion does only need post processing data, which is already calculated by every finite element 

software. 
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