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Abstract. The inability to statistically evaluate the damage size based on amplitude mapping has 

long plagued the ultrasound propagation imaging (UPI) system and related non-destructive 

evaluation (NDE) community. This paper proposes a damage visualization method called the 

Statistically Thresholded Anomaly Mapping (STAM) method to solve this problem. It could 

isolate the damage-induced anomalous waves from an ultrasonic full wavefield data, map their 

amplitudes into an image and statistically differentiate damage from the background noise and 

pristine region of a specimen, without prior knowledge or reference data of the specimen being 

inspected. The proposed method was demonstrated through the visualization and evaluation of 

a thermal damage inflicted in a glass fibre reinforced composite specimen. The effects of two 

parameters on result quality and accuracy of damage size evaluation were studied by varying 

their values independently. The optimized result showed that 99.9% of the background noises 

could be removed while maintaining clear visualization of damage, hence allowing the users to 

evaluate the presence, location, shape, size and severity of the damage accurately.  

1.  Introduction 

Ultrasounds are widely used in the material and structural nondestructive evaluation (NDE) due to its 

sensitivity towards physical properties such as volume, thickness, temperature and most importantly, 

damages or anomalies that are present on the surface or within the material [1]. In order to harvest these 

information that ultrasounds carry, the ultrasound propagation imaging (UPI) system had been 

developed [2] for NDE of plate-like waveguides such as aircraft wings [3] and radome panels [4]. UPI 

system and its associated result processing methods had shown the capabilities of revealing damages 

such as small cracks through the detection of anomalous waves, which corresponds to the scattering and 

reflected waves when an ultrasonic wave encounters a damage [5,6]. In recent years, UPI system had 

been further improved to give higher visibility to these anomalous waves. The result processing 

methods, which suppress incident waves through the subtraction of adjacent waves [5], frequency-

wavenumber domain filtering [7,8] and model-driven wavefield baseline subtraction [9], proved that the 

suppression of incident waves reveals anomalous waves clearly, thus revealing the presence and location 

of damage.  

However, these methods do not have statistical reliability when it comes to damage sizing and the 

results are typically in the video forms where the inspectors have to estimate the size of a damage by 

repeatedly examining the result videos, which is both unreliable and also inaccurate. This becomes a 

significant problem when the damage is incorrectly evaluated and its severity is underestimated. For 

http://creativecommons.org/licenses/by/3.0
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example, aircrafts are likely to get struck by lightning once every 10,000 hours of flight on average [10], 

which for an aircraft that is built mostly of composites such as Boeing 787, it is highly hazardous to 

underestimate the inevitable lightning damage as the lightning damages can severely degrade the 

mechanical properties of composites [11, 12]. Tragedies involving the loss of countless lives might 

occur if the composites’ damages deteriorate its mechanical strength to a critical level and causes a 

failure mid-flight. Therefore, it is of utmost importance to have statistical reliability when it comes to 

the detection and evaluation of damages. 

Previously, Capriotti et al. (2017) used Multivariate Outlier Analysis (MOA) to statistically analyse 

ultrasonic signals in comparison to an ultrasonic signal obtained from a pristine region of the same 

specimen [13]. Through the use of the Mahalanobis Squared Distance as part of the MOA, a Damage 

Index (DI) was obtained, whereby a large value of DI represents a damage. In their paper, MOA is 

reported to have 100% probability of detection while having a 10% probably of false alarms. Although 

this method has a high probability of detection, there exists an uncertainty of whether the pristine region 

of specimen used to obtain the reference signal is truly free from manufacturing defects. If such pristine 

region indeed exists, then paradoxically, its location must be known prior to the processing of inspection 

data. Other than that, the outcome of the analysis is unable to determine the sizes of the damages, which 

is a crucial information in order to evaluate the severity of any damage. 

To solve the inability of obtaining a statistically reliable result, this paper describes a reference-free 

method that provides a statistical damage threshold to the results obtained from amplitude mapping of 

the damage-induced ultrasonic wavefield, where values higher than the threshold are considered as a 

damage. Through the use of the threshold, the amplitude map will be rid of noises, leaving an amplitude 

map that shows only the damages. This method allows the damage sizes to have an absolute value 

instead of undesirable and indecisive estimations by examining the result videos repeatedly. 

2.  The proposed method 

The proposed method is called Statistically Thresholded Anomaly Mapping (STAM). It is suitable for 

processing of any ultrasonic full wavefield data acquired using UPI system, regardless if the ultrasonic 

excitation-sensing is achieved using a scanning laser exciter and a fixed piezoelectric sensor, or a fixed 

piezoelectric exciter and a scanning laser Doppler vibrometer (LDV) sensor. This method has an 

anomalous waves isolation component and a damage threshold calculation component, described in the 

following sections. 

2.1.  Anomalous waves isolation 

Due to the dispersive nature of ultrasound, waves guided by plate-like waveguides often have multiple 

modes mixed or overlapped in time [14, 15]. Wave modes which exist due to inspection excitation are 

collectively known as the incident modes. When these incident modes reflected by the damages have 

insufficient propagation time to separate from each other near damages, mode conversion occurs [16]. 

These mode-converted waves, also known as the anomalous waves, typically have a magnitude of a few 

orders smaller than the incident ones. Their small magnitude and the mix-modal characteristics make 

them unnoticeable at all or hard to be noticed, hence making the detection of damage associated with 

these anomalous waves difficult.  

In order to isolate the anomalous waves, the acquired ultrasonic wavefield signals are first grouped 

together as a three-dimensional (3D) spatiotemporal data matrix. After that, the 3D data undergoes a 3D 

DFT (discrete Fourier transform) to transform from the space-time domain to the wavenumber-

frequency domain [17–19]. Once transformed, the incident modes are usually demixed and easily 

distinguishable in the wavenumber-frequency domain. They are then suppressed or filtered out using a 

mode filter described in [19]. For thin plate-like materials typically used in the aerospace structural 

applications, the maximum number of modes exists is usually two, hence only one step of filtering is 

needed. As long as the wavenumber and the frequency of the anomalous waves are different from the 

incident modes, the anomalous waves will remain in the mode-filtered data, hence isolated for further 

processing.  
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The process of rendering the anomalous waves into an amplitude map to show the presence and 

location of damages can be done by determining the peak-to-peak amplitudes of all mode-filtered signals 

and mapping the values into an intensity graph while conserving their relative spatial position. By using 

suitable colour scale, a stark contrast between the damage and pristine areas can be realized, which 

allows one to easily identify the damaged areas from the pristine areas. This is because after the removal 

of incident modes, only the anomalous waves and noises remain in the 3D data matrix, with damaged 

areas containing the anomalous waves and the pristine areas containing the noises. These anomalous 

waves’ amplitudes are higher than the noise floor. When a suitable colour scale is used, the damages 

can be easily identified. A suitable variable time window, as described in [5], such as where the peak-

to-peak amplitude of anomalous waves are at the highest and the noise at the lowest, can also be used 

optionally to increase the contrast between the peak-to-peak amplitudes of anomalous waves and  noises 

so that the clearest result can be produced. This anomalous waves isolation method offers the advantage 

of not being dependent on correct selection of any wave mode for damage evaluation, hence 

circumvented the need of performing reference inspection of the specimen at pristine state to understand 

the complex ultrasonic waves and modes.  

2.2.  Damage threshold calculation 

To distinguish damages from background noises in an amplitude map, a statistical damage threshold is 

proposed. The damage threshold (DT) is defined as in Eqn. 1, where μ and σ represents the mean and 

standard deviation of background noises, respectively, while M represents a constant multiplier. 

 𝐷𝑇 = 𝜇 +𝑀𝜎, (1) 

To determine μ, each pixel value is first ranked from the lowest value to the highest value. After that, 

the sum of values starting from the lowest rank up to the Nth rank is divided by N. The amplitude map is 

then masked according to Eqn. 2, where 𝑉(𝑥, 𝑦) represents the value of a pixel at location (𝑥, 𝑦).   

 𝑉(𝑥, 𝑦) = {
0, 𝑉(𝑥, 𝑦) ≤ 𝐷𝑇

𝑉(𝑥, 𝑦), 𝑉(𝑥, 𝑦) > 𝐷𝑇
 , (2) 

The final output is an amplitude map devoid of noises such that the damages can be visualized, and their 

sizes and also locations can be accurately determined. The damage threshold is suitable for any 

anomalous waves amplitude map as long as the N number of pixels do not contain anomalous wave 

values.  

3.  Experimental validation 

3.1.  Acquisition of ultrasonic wavefield data 

An ultrasonic full wavefield data matrix was acquired using an Ultrasound Propagation Imaging (UPI) 

system [2]. The system consists of a custom-made diode-pumped solid-state Nd:YAG (neodymium-

doped yttrium aluminium garnet) pulsed laser (PL) as the source for ultrasonic waves on the specimen, 

a galvano-motorized laser mirror scanner (LMS) to point the laser to the intended impingement grid 

points, a fixed broadband ultrasound sensor with 350kHz cut-off to detect ultrasonic waves originating 

from the impingement points, an oscilloscope to digitize the detected waves from the sensor, and a 

computer for hardware synchronization, data storage, result processing, and result display. The PL has 

a wavelength of 532nm, a beam diameter of 4mm, a divergence of 0.5mrad and a pulse duration of 30ns, 

which is capable of producing ultrasonic waves non-destructively at the impingement point due to the 

transient thermoelastic expansion and contraction phenomenon [3]. The PL fires the laser at the LMS 

that is specially made to reflect lasers with 532nm wavelengths. The two computer-controlled galvano-

motorized mirrors inside the LMS, which stand orthogonally from each other, directs the laser to the 

intended impingement grid points by rotating the mirrors they are attached to. By controlling the LMS, 

the laser impinges the area of inspection interest in a raster pattern, starting from the top left corner to 

the bottom right corner in an x by y grid with the same scan distance intervals for both the x and y axes. 
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From each laser impingement point, ultrasonic waves propagate and disperse into mixed multimodal 

ultrasonic waves that are detected by the sensor. The ultrasonic signals are then received by the 

oscilloscope to be digitized and sent to the computer for storage and processing. 

3.2.  Specimen 

Specimen used in this study was fabricated in-house from a 250 by 250mm glass fibre reinforced epoxy 

prepreg (HEXCEL, BMS 8-79 Style 1581 with HexPly F155 resin system) as a 1-layer [(0/90)] lamina. 

Curing was done in vacuum bagging at 74 kPa, heated by thermal blanket at a rate of 4℃/min, followed 

by 90 minutes dwell at 127℃, and cool down to room temperature at 3℃/min. The thermal damage of 

the specimen was inflicted by contact heating using a 20mm diameter aluminium rod heated to 1.5 times 

of Tg (glass transition temperature), i.e. 182℃, for 30 minutes. Inspection scan was conducted on the 

specimen over an 80 by 80mm area with an interval of 0.5mm in both the x and y axes. Based on origin 

located at the lower left corner of inspection area, the center of the thermal damage was located at 

position (47, 35) mm and the sensor located at position (45, -105) mm. The acquired ultrasonic signals 

were then processed using the Statistically Thresholded Anomaly Mapping (STAM) method. 

4.  Results and discussion 

4.1.  Effects of anomalous waves isolation 

Figure 1 shows a representation of frequency-wavenumber data in grey-scale, where signals with the 

highest and lowest amplitude are shown in white and black, respectively. Figure 1(a) clearly shows the 

incident wave mode as white lines spanning from 0m-1 to 200m-1 in the wavenumber (K) axis and 0kHz 

to 350kHz in the frequency (F) axis. It should be noted that the abrupt stop at 350kHz was caused by 

the sensor's detection range of up to 350kHz. Figure 1(b) shows the frequency-wavenumber (FK) map 

after filtering out the incident mode through the use of a wavenumber filter with a 37.5m-1 half-power 

taper bandwidth (BM) and 12.5m-1 upper (CH) and lower (CL) wavenumber cutoffs, along the white FK 

lines that represent the incident mode. The filter was designed to radiate from the origin of FK axis to 

the infinity, suppressing all signals within its effective band to low amplitude, hence the filtered zone 

appeared as black regions extending to the top of Figure 1(b). 

 
Figure 1. Frequency-wavenumber map (a) before and (b) after filtering of incident wave mode 

Figure 2 shows intermediate inspection results after each step of data processing. Photograph of the 

specimen is given in Figure 2(a). It shows charring within the thermal damage infliction area that is 

indicated with a dotted circle. A snapshot from the ultrasound wavefield propagation imaging (UWPI) 

[2] video before and after the filtering of incident mode is given in Figure 2(b) and (c), respectively. The 

anomalous waves caused by the thermal damage is obscured by high amplitude of incident waves, hence 

unnoticeable in Figure 2(b). Once the incident mode was filtered out, the anomalous waves can clearly 

be seen in the middle of Figure 2(c), despite polluted by background noises. Further processing the 
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mode-filtered data into an amplitude map enhanced the visibility of the damage, as shown in Figure 

2(d). Note that the amplitude map facilitates easy detection of the damage, but the size of the damage 

could not be measured directly since the boundary of the damage could not be clearly defined yet, due 

to the background noises.  

 

Figure 2. Intermediate inspection results based on (a) naked eye inspection; UWPI video snapshots 

(b) before and (c) after filtering of incident wave mode; and (d) amplitude map of anomalous waves 

without damage thresholding. 

4.2.  Effects of damage thresholding 

Statistically Thresholded Anomaly Mapping (STAM) result images will be produced after applying the 

damage threshold. There are two variables affecting the results. The first variable is the value of N, 

which physically represents the number of samples used for the calculation of damage threshold.  The 

value of this variable is more conveniently determined as P, which is a percentage of the total pixel 

number in an amplitude map. Applying the damage threshold calculated based on a constant value of M 

= 4 but varying the value of P from 10% to 50% gives interesting results in Figure 3. When a higher P 

is used, the background noise in the STAM image is significantly reduced. This is because, as more 

noise samples are gathered, the mean and standard deviation of background noise are closer to their true 

values. Reduction of background noises is important to allow the users to be able to distinguish the 

damaged area from the pristine area without a doubt regarding the actual damage size depicted by the 

STAM image. Concluding from these results, P = 50% is preferred as it has the least background noises. 

Setting P to a value higher than 50% is not preferred as users wouldn't know the damage size beforehand 

in real life cases, such that it poses a possibility of regarding a damaged area as noise and subsequently 

remove it from the final result, which in turn causes underestimation of the real damage size. 

 

Figure 3. STAM images after applying a damage threshold calculated based on a constant M = 4 and 

different statistical sample size P at (a) 10%, (b) 30%, (c) 40%, and (d) 50% 

The second variable affecting the results is the multiplier M in Eqn. 1. STAM images after applying 

the damage threshold calculated based on a constant value of P = 50% but varying the value of M from 

1 to 8 are given in Figure 4. According to the Empirical Rule, 68% of data, which in this case is the 

background noise, falls within 1 standard deviation of mean, 95% of data falls within 2 standard 

deviations of mean and finally, 99.7% of data falls within 3 standard deviations of mean. By using  

M = 4, it is assumed that 99.9% of background noise will be covered, which means that the result will 

(a) (b) (c) (d)

0   1   2 cm

(a) P = 10% (b) P = 30% (c) P = 40% (d) P = 50%
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be noise free with a 99.9% confidence. Since M = 4 will result in a 99.9% removal of background noise, 

it can be concluded that it is the best choice as it is redundant to go higher than that. Other than that, a 

higher multiplier poses a threat of setting the damage threshold value too high such that even the 

damaged areas would be classified as background noise. This is shown in the Figure 4(d) where the 

damage could be measured to have a 20 mm diameter, even when the thermal damage can be safely 

assumed to be larger than that, simply because heat may be conducted to the surrounding of actual 

contact area with the 20 mm diameter heat damage inflicting aluminium rod. This proves that when M 

= 8 is used, only the most damaged area will be considered as damage while the less damaged area is 

considered as noise. 

 

Figure 4. STAM images after applying a damage threshold calculated based on a constant P = 50% 

and different values of multiplier when (a) M = 1, (b) M = 2, (c) M = 4, and (d) M = 8. 

5.  Concluding remarks 

The inability to statistically evaluate the damage size based on amplitude mapping has long plagued the 

UPI system. This paper proposed a damage visualization method called the STAM method to solve this 

problem. The STAM can isolate anomalous waves that are mode-converted from incident waves-

damage interaction, and then map their amplitudes into an image in which the existence and location of 

damages can be visualized. The boundaries of damages can be identified by utilizing the statistical 

damage threshold calculation component of STAM, which facilitates accurate damage size evaluation.  

Experimental validation of the proposed STAM method was conducted by inspecting a glass fibre 

reinforced polymer specimen inflicted with a thermal damage. A UPI system with scanning laser as 

ultrasound exciter and a fixed broadband ultrasound sensor was used to acquire the ultrasonic full 

wavefield data. Intermediate result in the form of anomalous waves amplitude map showed that the 

thermal damage could be clearly visualized, although the map suffered from some background noises. 

The effect of the statistical damage threshold calculation component of the STAM was examined by 

varying two parameters independently, i.e. M, the standard deviation multiplier, and P, the number of 

samples used for the calculation of damage threshold in term of percentage of total pixel number in the 

amplitude map. The results showed that P = 50% and M = 4 is the best combination to accurately 

evaluate the shape and size of the damage while eliminating 99.9% of background noises.  

The proposed STAM method proved to be able to accurately locate and determine the size of a 

damage as long as anomalous waves are present in the ultrasonic wavefield data. It has the advantage of 

not requiring a reference data from a pristine specimen or a pristine region of the same specimen. 

Furthermore, its functionality and accuracy are not dependent on the correct selection of any specific 

wave mode, hence circumvented the need of performing reference inspection or numerical study of 

pristine specimen for the understanding of the complex ultrasonic waves and modes. The statistical 

damage threshold calculation component of STAM is suitable for other anomalous waves amplitude 

mapping applications as well, provided that damaged area is smaller than P = 50% of imaging area.  

The authors are currently improving the STAM method by optimizing the incident mode filter so 

that even the incident waves at the edges can be filtered out fully. Quantitative accuracy and reliability 

analysis are also underway.  

(a) M = 1 (b) M = 2 (c) M = 4 (d) M = 8
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