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Abstract.  According to the energy method, the dynamic stability of a crane’s telescopic boom 
under the periodic load is studied, which is known as parametric resonance, based on the 
design code for a crane (GB/T3811-2008), the stability analysis model of the box telescopic 
boom can be regarded as variable-section stepped columns. The parametric vibration equation 
of n-stepped columns which expressed as Mathieu Equation is deduced by the Hamilton 
Principle, then the Critical frequency equation of dynamic instability regions of the telescopic 
booms are derived, finally, the effects of damping to the dynamic stability of telescopic boom 
are discussed. The results show that, the dynamic instability regions are reduced when the 
damping coefficient is increased and the effect on the second dynamic instability region is 
more obvious, that means damping improves the structure’s dynamic stability. 

1. Introduction  
The telescopic boom is the main load-carrying part of the truck crane and is the most important 
working part. When the lifting quality rises or falls off the ground during the braking process or 
suddenly unloads, the inertia of the hoisting crane and the flexibility of the structure can cause 
vibration of the telescopic boom, especially when the telescopic boom is in a fully extended state and 
at minimum amplitude, the telescopic boom structure may suffer from dynamic instability. Based on 
the crane design specification (GB/T3811-2008), the calculation model of telescopic boom static 
instability is a variable cross-section stepped column, and its instability critical force can be solved by 
the energy method, the exact finite element method, etc [1-3] . Therefore, in the study of the dynamic 
stability of the crane telescopic boom, the telescopic boom is also equivalent to a variable cross-
section stepped column model, which is in line with the actual engineering requirements. To solve the 
dynamic stability under cyclic loading, the method of the former Soviet Union scholars, Bolotin is 
often used to determine the dynamic stability and dynamic instability regions of the structure [4]. Sun 
Qiang [5] used the Mathieu-Hill equation to study the dynamic stability of isometric straight bars 
under cyclic loading. Li Xiaodong [6] determined the dynamic instability region of the buckling 
restrained supporting bar under cyclic loading according to the Bolotin method. Ratko Pavlovic [7] 
studied the dynamic stability of an isometric straight rod under the combined effect of axial and 
bending moments by using the differential equation method; MA De Rosa [8] studied the dynamic 
stability of the continuously variable beam with the DQM method. However, the above studies on the 
dynamic stability under axial cyclic loading mainly focus on single components with continuous 
section changes. The dynamic stability of the stepped columns with discontinuous changes in the 
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cross-section and the multiple structures composed of multiple individual components are 
investigated. In [9-11], the finite element method was used to study the dynamic stability of the crane's 
telescopic boom under cyclic loading. Although this method can effectively solve the dynamic 
stability problem of the telescopic boom under cyclic loading, it has the disadvantage of a complicated 
solution which is not conducive to the practical application of engineering. Therefore, in this paper, 
the energy method combined with the Hamilton principle is used to establish the parametric vibration 
equation of the telescopic boom which is expressed in the form of the Mathieu equation. The critical 
frequency equation of the boundary of the dynamic instability region of the telescopic arm is deduced, 
and the influence of the damping on the unstable region of the dynamics is discussed. The proposed 
method provides a basis for design calculations and can guide the practical application of engineering. 

2. Establishment of parametric vibration equation of telescopic boom  
The dynamic stability analysis model of the telescopic boom of a truck crane can be equivalent to a 
multi sectioned column, the mechanical models are shown in figure. 1. Assuming li as the total length 
of i sections telescopic boom. L is the total length of the telescopic boom namely when i=n, L=ln. mi is 
the mass per unit length of section i, E is the elastic modulus of the material ,Ji is the inertia moment 
of section i, the axial resonant force P0+Ptcosθt is applied at the top of the column, where P0, Pt are the 
amplitudes of the resonant force respectively, θ is the resonant circular frequency. 

 

Figure 1. The mechanical model of dynamic stability for multi sectioned telescopic boom. 

Assuming the lateral vibration displacement curve of the telescopic arm is 
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The potential energy of the telescopic boom is expressed as U(t)=U1(t)+U2(t), where U1(t) is the 
bending strain energy ,U2(t) is the external potential energy. 
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The damping of the telescopic boom in vibration is equivalent to linear viscous damping, then, the 
energy consumed by the damping D(t) is gained. 
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where: Ci is the equivalent damping coefficient of section i; EJi is the flexural rigidity of section i. 
According to the Hamilton Principle, 
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Substitute equation (1) - (4) into equation (5) 
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Equation (6) is the famous Mathieu equation, assuming the dimensionless coefficient 
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where: Ω is the natural frequency of the lateral free vibration of the telescopic arm under the axial 
resonance force amplitude P0, and the unit is Hz, μ is the excitation coefficient, ω is the natural 
frequency of lateral free vibration of the stepped column without any load, and the unit is Hz, ρ is the 
static destabilizing critical load of the stepped column, the unit is N, β is the dimensionless damping 
coefficient. 

Equations (6) - (11) are the parametric vibration equations of n sections crane telescopic boom. 

3. Determination of dynamic stability and instability regions of telescopic boom 
The equation (6) is a Mathieu equation, we judge it must have periodic solutions of T and 2T based on 
the properties of the mentioned equation. In order to get the critical frequency equation of the dynamic 
stability region, the Fourier series expansion is used to get solutions of period 2T and T, and they can 
be expressed respectively as follows: 
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Substituting equation (12) and equation (13) into equation (6), in order to make the establishment 
of equations, each coefficient of sin (nθt/2) and cos (nθt/2) must be equal to zero. The linear equations 
in terms of {a1,b1,a3,b3, …a2k-1,b2k-1}T and {b0,a2,b2,a4,b4,…a2k,b2k}T can be derived, the necessary and 
sufficient condition for a system of linear equations to have a nonzero solution is that the determinant 
of its coefficient matrix must be zero. Therefore, let the mentioned determinant of coefficient be equal 
to zero, then this infinite determinant is convergent and it can be expressed as follows. 

The corresponding critical frequency equation for the 2T cycle is as follows: 
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where: n=1, 3, 5, 7,…2k-1. 
The corresponding critical frequency equation for the T cycle is as follows: 
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where: n = 2, 4, 6, 8,…2k. 
Equation (14) and equation (15) are the critical frequency equations of the boundary of the 

dynamic unstable region of the structure. The critical frequency refers to the external load frequency 
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corresponding to the boundary of the dynamic unstable region. However, the first and second areas of 
dynamic stability are some of the most dangerous in practical engineering. 

The critical frequency equation of the first dynamic unstable region is obtained by substitute n=1 
into equation (14), that also means keeping the first order solution of the determinant of 2T cycle 
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 By solving equation (16), we can find: 

  2 2 2 2 2 2 4
1,2 2 2 4                                    (17) 

Using the same method, the critical frequency equation of the second dynamic unstable region is 
obtained by substitute n=2 into equation(15), that also means keeping the second order solution of the 
determinant of T cycle, then we can get: 

    2 2 2 4 2 2 2 4 4
3,4 1 2 4 2 1                                   (18) 

Under the action of a given axial resonance force P(t)=P0+Ptcosθt, the boundary region composed 
of critical frequencies θ can be determined, the region of dynamic stability is limited by the critical 
frequency of different cycles, and the region of dynamic instability is determined by two critical 
frequencies of the same cycles. That is, the dynamic unstable region is separated from the stable 
region by the solution of the cycles T and 2T, and the critical frequency between the two cycles is the 
dynamic stable region. By substitute equation (7), equation (8) and equation (11) into equation (17) 
and equation (18), then the dynamic stable region and unstable region of crane’s telescopic boom 
under periodic load can be obtained.  

4. Examples 
Taking the telescopic boom of a typical five-section crane as an example, the dynamic stability 
calculation model is a cantilever stepped beam which is shown in figure 2, the total length of the 
stepped column L=30m, Young’s modulus E=200GPa, Sectional moment of inertia J1=1.1786×102m4, 
density 7800kg/m3， l1=0.24L, l2=0.43L, l3=0.62L, l4=0.81L, l5=L, λ1=1.0, λ2=J2/J1=0.77, λ3=J3/J1=0.59, 
λ4=J4/J1=0.46, λ5=J5/J1=0.35, analyze the dynamic stability of the telescopic crane when the cyclic 
axial loads are P(t)=P0+Ptcosθt. 

 

Figure 2. The calculation model of 5-section telescopic boom. 

In order to analyze the influence of different values P0 on the dynamic instability of the telescopic 
boom, the value of P0 is chosen by 0 N, 0.5×106 N, 1.0×106 N, 1.5×106 N, 2.0×106 N respectively, 
assuming the damping coefficient β=0, the amplitude of the vibration force of the periodic load Pt is 
taken as the horizontal coordinate, and the critical vibration frequency θ/2Ω is taken as the vertical 
coordinate. Drawing the first and second dynamic stability curves of a five-section telescopic arm 
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under different axial resonant force amplitudes P0 and Pt , which is shown in figure 3. The figures 
show that with the increase of P0, the area of dynamic instability increases, when P0 is equal to the 
static destabilizing critical load ρ, no irrespective of the value Pt is, the structure will still lose bearing 
capacity. 

 

Figure 3. Dynamic curves of clamped 5-sections stepped column under different axial resonant forces. 

In order to study the influence of damping on the dynamic unstable region, taking the 5-sections 
crane telescopic boom shown in figure 2 as an example, assume P(t)=P0+Ptcosθt, P0=1.0×106 N. 
Making Pt as the horizontal coordinate, and the critical vibration frequency θ/2Ω as the vertical 
coordinate, according to the energy method, the first and second dynamic stability region curves of a 
five-section telescopic arm under different damping coefficient β=0, 0.2, 0.4, 0.6 are drawn, which is 
shown in figure 4. 

 

Figure 4. Parametric vibration curves of telescopic boom with different damping coefficients. 

According to figure 4, it can be seen that as the damping coefficient gradually increases, the 
instability region of the telescopic boom decreases, the existence of damping makes the instability 
region smaller, and the influence on the second instability region is more obvious. At the same time, 
the existence of damping “cuts offs” the unstable region connected with the ordinate, which makes it 
impossible for the structure of the crane's telescopic boom to be unstable when the load amplitude Pt is 
small. The results show that the existence of damping reduces the possibility of dynamic instability of 
the crane telescopic boom, that is, the presence of damping is conducive to structural dynamic 
stability. 
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5. Conclusions 
In this paper, based on the energy method, the Hamiltonian principle is used to establish the 
parametric vibration equation of the crane telescopic arm expressed in the form of Mathieu equation. 
The critical frequency equation of the dynamic instability boundary of the telescopic boom is deduced, 
and the dynamic stability region and the dynamic instability region of the telescopic boom are 
determined, even more, the impact of damping on dynamic stability is discussed. The results show that 
the dynamic instability region increases with the increase of the amplitude of the axial resonance force 
P0. When P0=ρ, the structure loses the bearing capacity regardless of the value of Pt; With the gradual 
increase of the damping coefficient, the dynamic instability region decreased, and the impact on the 
second dynamic instability area is more obvious. 
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