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Abstract. Alzheimer’s disease (AD) is the most common neurodegenerative disease in 
the elderly. The presence of neurofibrillary tangles (NFTs), which primarily contain 
self-aggregated hyper phosphorylated tau protein, is one of the major pathological 
characteristics of AD brains. Tau is a microtubule-associated protein important for 
regulating microtubule assembly and stability. Abnormal hyper phosphorylation of tau 
decreases its microtubule-binding capacity and disrupts microtubule stability. A 
number of protein kinases have been implicated in the abnormal phosphorylation of 
tau including mitogen-activated protein kinases (MAPKs). This article reviews the 
hyper phosphorylation of tau in the pathogenesis of AD and discusses the role of 
MAPKs in the phosphorylation of tau.  

1.  Introduction 
Alzheimer’s disease (AD) is the most common neurodegenerative disease in the elderly. Patients with 
AD suffer progressive brain tissue damage and cognitive dysfunction [1, 2]. As the aging population 
increases, the prevalence of AD has increased remarkably worldwide and AD has become one of the 
leading causes of disability and death among the elderly [3, 4].  

The major pathological characteristics of AD brains are senile plaques, neurofibrillary tangles 
(NFTs) and neuronal loss [5]. The main components of the NFTs are paired helical filaments and 
straight filaments, which primarily contain self-aggregated hyper phosphorylated tau [6]. Tau is a 
microtubule-associated protein important for regulating microtubule assembly and stability [7]. 
Abnormal hyper phosphorylation of tau decreases its microtubule-binding capacity and disrupts 
microtubule stability [8]. The disintegration of the microtubules system causes the decline of the 
axonal transport, resulting in the loss of the axon function [9]. The mechanism of abnormal hyper 
phosphorylation of tau that leads to neuronal dysfunction is still not totally understood. A number of 
protein kinases, including mitogen-activated protein kinase (MAPK), have been implicated in the 
abnormal phosphorylation of tau [10]. This article reviews the hyper phosphorylation of tau in the 
pathogenesis of AD and discusses the role of MAPK in the phosphorylation of tau. 
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2.  Microtubule-associated tau protein 
The human tau gene is located on chromosome 17q21 [11], containing 16 exons [12]. Tau protein is 
mainly expressed in neurons. In human adult brain, alternative splicing of exons 2, 3 and 10 generates 
6 major isoforms of tau protein, ranging in length from 352 to 441 amino acids, and size from 45 to 65 
kDa [13, 14]. The primary structure of full-length tau protein can be divided into four regions: N-
terminal acidic domain, proline-rich basic domain, microtubule binding domain and C-terminal 
domain. Tau associates with microtubules primarily through the microtubule binding domain, 
comprising either three or four repeats sequences of 31 amino acids, separated by flanking regions 
[15]. The microtubule binding domain of tau also interacts with actin, providing an important link 
between the actin filament and microtubule cytoskeletons [16]. The main function of tau is promoting 
microtubule stabilization, which is essential for cytoskeleton maintenance and intracellular transport 
[17]. Thus, tau dysfunction decreases microtubule stability and impairs the axonal transport. Tau has 
also been shown to interact with Src homology-3 (SH3)-containing proteins including the Src family 
protein kinases, suggesting tau has additional functions such as modulation of cell signaling pathways 
[18]. The association of amino-terminal domain of tau with the plasma membrane indicates that tau 
maybe a mediator of microtubule-plasma membrane interaction [19, 20].  

Tau is extensively posttranslational modified by phosphorylation. There are about 45 serine and 35 
threonine phosphorylation sites in the longest brain tau protein isoform which contains 441 amino 
acids [21, 22]. At least thirty phosphorylation sites have been described, using the phosphorylation 
dependent monoclonal antibodies of tau, mass spectrometry and sequencing [23]. Most of the 
phosphorylation sites of tau are located in the proline-rich regions [24]. 

3.  Abnormal phosphorylation of tau protein in AD 
Under normal physiological conditions, the phosphorylation and dephosphorylation of tau is in a 
dynamic balance [25]. However, the phosphorylation of tau in the brains of AD patients is 2-3 times 
more than that in the normal individuals [26]. Abnormal hyper phosphorylation of tau decreases its 
microtubule-binding capacity and disrupts microtubule stability [8]. The disintegration of the 
microtubules system causes the decline of the axonal transport, resulting in the loss of the axon 
function [9] and even neuronal death, which can lead to a series of neurodegenerative conditions [27]. 
The hyper phosphorylated tau aggregated into straight filaments and paired helical filaments, which 
form NFTs in the neurons of patients with neurodegenerative diseases including AD [28]. It has been 
shown that the number of NFTs correlates with the presence and the degree of dementia in AD [29].  

4.  Tau phosphorylation by MAPKs 
MAPKs are important cell pathways that regulate many cell activities including gene expression, 
mitosis, metabolism, apoptosis, proliferation, differentiation and movement [30]. Three major MAPK 
family kinases identified in mammals are extracellular signal regulated kinase 1 and 2 (ERK1/2), c-
Jun N-terminal kinase 1 and 2 (JNK1/2) and p38 MAPKs [31]. These MAPKs are sequentially 
activated by MAPK kinase (MAPKK or MKK) and MAPK kinase kinase (MAPKKK or MEK) [32, 
33]. The diversified functions of MAPKs are achieved by the phosphorylation of a wide variety of 
substrates by MAPKs, such as phospholipase, transcription factors and cytoskeleton proteins [30]. 
Studies have shown that MAPKs also participate in tau phosphorylation. The serine and threonine 
sites of tau protein phosphorylated by MAPKs in vitro are consistent with the phosphorylation sites of 
PHF-tau found in AD brains [34]. Moreover, it is found that MAPKs are localized in AD brain region 
where axonal dystrophy is developed [35], close to the area of senile plaques and NFTs [36]. Further 
evidence suggests that p38 MAPKs, ERK1/2 and JNK1/2 are all involved in the phosphorylation of 
tau in AD. 

P38 MAPKs are serine/threonine protein kinases with six isoforms, namely p38α1, p38α2, p38β1, 
p38β2, p38γ and p38δ, which can be activated by upstream kianses MKK3, MKK4, and MKK6 in 
response to external stress, inflammatory cytokines or UV radiation [37]. Activation of p38 MAPK is 
an early event in pathological process of AD [38]. Both in vitro and in vivo results suggest that tau can 
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be phosphorylated by p38 MAPKs [39]. The activated p38 MAPK colocalized with the epitope of 
AT8 antibody in AD brains [38].  

In response to growth factors, cytokines, osmotic stress and microtubule disorders, ERK1/2 are 
activated as the downstream kinases of Raf and MEK1/2 [40]. The activated ERK1/2 can 
phosphorylate many substrates including transcription factors, membrane proteins and cytoskeleton 
proteins like tau [30]. In PC12 cells, the activation of ERKs is associated with manganese-induced 
phosphorylation of tau at S199, S202, T205 and S404 [41]. The phosphorylation of tau by ERK may 
be closely linked to oxidative stress [42]. The basal levels of phosphorylated tau are not reduced by 
pharmacologic inhibition of ERK1/2 in mice and SH-SY5Y cells [43]. Thus, further studies are 
needed to determine if ERK directly phosphorylates tau under pathologic conditions. 

There are mainly three different isoforms of JNKs, JNK1, JNK2 and JNK3 coded by jnk1, jnk2 and 
jnk3 respectively [44]. JNKs can be activated by many factors including cytokines, growth factors, 
oxidative damage, osmotic pressure and heat shock. When inhibit the activity of JNKs, the 
phosphorylation of tau at S202, T205, and S422 is also significantly decreased [45]. In hippocampal 
and cortical regions of AD brains, the localization of activated JNK is overlapped with tau-positive 
NFTs [46]. It has also been shown that the phosphorylation of tau by JNK isoforms reduces the ability 
of tau to promote microtubule assembly, suggesting an important role of JNK in tau pathology [47].  

5.  Conclusion 
AD is one of the most common neurodegenerative diseases seen in the elderly [1]. With the aging of 
the population, the number of people with AD has increased remarkably and AD has become a major 
public health problem globally [3]. Tau protein is a major microtubule-associated protein in neurons 
[7]. Its normal phosphorylation is necessary for tau to perform its functions. However, the abnormal 
hyper phosphorylated tau falls off microtubules, disrupting microtubule stability and forming NFTs, a 
major pathological characteristic found in AD brains [1, 8]. MAPKs are important cell signal 
pathways that lead to the hyper phosphorylation of tau [34, 38, 46]. It is also reported that hyper 
phosphorylated tau can induces the activation of MAPK, which may further promote the hyper 
phosphorylation of tau and tau pathology [48]. Therefore, the activation of MAPKs and the hyper 
phosphorylation of tau by MAPK are important events contributing to the development of AD.  

Acknowledgments 
This work was financially supported by National Natural Science Foundation of China (31371082), 
research fund from Harbin Institute of Technology at Weihai [HIT(WH)Y200902] and Weihai Science 
and Technology Development Program (2009-3-93 and 2011DXGJ14). 

References 
[1] K. Blennow, M.J.D. Leon, H. Zetterberg, Alzheimer’s disease, Lancet. 368 (2006) 387-403. 
[2] W.A. Rocca, R.C. PeKnopman, L.E. Hebert, Trends in the incidence and prevalence of 

Alzheimer’s disease, dementia, and cognitive impairment in the United States, Alzheimers 
Dement. 7 (2011) 80-93. 

[3]  C.P. Ferri, M. Prince, C. Brayne, Alzheimer’s Disease International Global prevalence of 
dementia: a Delphi consensus study, Lancet. 366 (2005) 2112-2117. 

[4] WHO, World Health Report 2003-Shaping the future, Vet. Rec. 1 (2003) 213-216. 
[5] N. Zilka, M. Ferencik, I. Hulin, Neuroinflammation in Alzheimer's disease: protector or 

promoter, Bratisl. Lek. Listy. 107 (2006) 374-383.   
[6] A. Alonso, T. Zaidi, M. Novak, I. Grundke-Iqbal, Hyperphosphorylation Induces Self-

Assembly of tau into Tangles of Paired Helical Filaments / Straight Filaments, Proc. Natl. 
Acad. Sci. U S A. 98 (2001) 6923-6928. 

[7] B.L. Goode, P.E. Denis, D. Panda, Functional interactions between the proline-rich and repeat 
regions of tau enhance microtubule binding and assembly, Mol. Biol. Cell. 8 (1997) 353-365. 

[8] C.M. Cowan, A. Mudher, Soluble hyper-phosphorylated tau disrupts the microtubule-binding 



4

1234567890‘’“”

ACMME 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 394 (2018) 022023 doi:10.1088/1757-899X/394/2/022023

 
 
 
 
 
 

function of normal tau in vivo, Alzheimers  Dement. 5 (2009) 135-136.  
[9] M.D. Tangschomer, A.R. Patel, P.W. Baas, Mechanical breaking of microtubules in axons 

during dynamic stretch injury underlies delayed elasticity, microtubule disassembly, and 
axon degeneration, FASEB J. 24 (2010) 1401-1410. 

[10] G. Drewes, B. Lichtenberg-Kraag, F. Doring, Mitogen activated protein (MAP) kinase 
transforms tau protein into an Alzheimer-like state, EMBO J. 11 (1992) 2131-2138.  

[11] R.L. Neve, P. Harris, D.M. Kurnit, Identification of cDNA clones for the human microtubule-
associated protein tau and chromosomal localization of the genes for tau and microtubule-
associated protein 2, Brain Res. 387 (1986) 271-280. 

[12] A. Andreadis, J.A. Broderick, K.S. Kosik, Relative exon affinities and suboptimal splice site 
signals lead to non-equivalence of two cassette exons, Nucleic. Acids. Res. 23 (1995) 3585-
3593.  

[13] M. Goedert, M.G. Spillantini, R. Jakes, Multiple isoforms of human microtubule-associated 
protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease, 
Neuron. 3 (1989) 519-526.  

[14]  A. Andreadis, Misregulation of tau alternative splicing in neurodegeneration and dementia, 
Prog. Mol. Subcell. Biol. 44 (2006) 89-107. 

[15] N. Gustke, B. Trinczek, J. Biernat,  E.M. Mandelkow, E. Mandelkow, Domains of tau protein 
and interactions with microtubules, Biochemistry. 33 (1994) 9511-9522. 

[16] G.A. Farias, J.P. Muñoz, J. Garrido, Tubulin, actin and tau protein interactions and the study of 
their macromolecular assemblies, J. Cell. Biochem. 85 (2002) 315-324. 

[17] D. Yu, S.C. Feinstein, M.T. Valentine, Effects of wild type tau and disease-linked tau mutations 
on microtubule organization and intracellular trafficking, J. Biomech. 49 (2016) 1280-1285. 

[18] C.H. Reynolds, C.J. Garwood, S. Wray, Phosphorylation regulates tau interactions with Src 
homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cgamma1, Grb2, and 
Src family kinases, J. Biol. Chem. 283 (2008) 18177-18186. 

[19] A.M. Pooler, D.P. Hanger, Functional implications of the association of tau with the plasma 
membrane, Biochem. Soc. Trans. 38 (2010) 1012-1015.  

[20] R. Brandt, J. Léger, G. Lee, Interaction of tau with the neural plasma membrane mediated by 
tau's amino-terminal projection domain, J. Cell. Biol. 131(1995) 1327-1340. 

[21] J. Avila, F. Hernández, Tau Phosphorylation, Adv. Neurobiol. (2011) 73-82. 
[22] S. Lovestone, C.H. Reynolds, The phosphorylation of tau: a critical stage in neurodevelopment 

and neurodegenerative processes, Neuroscience. 78 (1997) 309-324. 
[23] M. Pevalova, R. Filipcik, M. Novak, Post-translational modifications of tau protein, Bratisl Lek 

Listy. 107 (2006) 346-353. 
[24] M. Morishima-Kawashima, M. Hasegawa, K. Takio, Proline-directed and non-proline directed 

phosphorylation of PHF-tau, J. Biol. Chem. 270 (1995), 823-829. 
[25] M.L. Billingsley, R.L. Kincaid, Regulated phosphorylation and dephosphorylation of tau 

protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration, 
Biochem. J. 323 (1997) 577-591. 

[26] J.Z. Wang, C.X. Gong, K. Iqbal, I. Grundke-Iqbal, Abnormal posttranslational modifications of 
Alzheimer Microtubule - associated Protein tau, Chin. J. Clin. Neurosci. 6 (1998) 1-5. 

[27] S. Mondragón-Rodríguez, G. Basurto-Islas, L. Hyoung-gon, Causes versus effects: the 
increasing complexities of Alzheimer’s disease pathogenesis, Expert. Rev. Neurother. 10 
(2010) 683-691. 

[28] L.M. Ittner, J. Götz, Amyloid-β and tau — a toxic pas de deux in Alzheimer's disease, Nat. Rev. 
Neurosci. 12 (2011) 65-72. 

[29] P.V. Arriagada, J.H. Growdon, E.T. Hedley-Whyte, Neurofibrillary tangles but not senile 
plaques parallel duration and severity of Alzheimer's disease, Neurology. 42 (1992) 631-639. 

[30] Z. Chen, TB. Gibson, F. Robinson, MAP kinases, Chem. Rev. 101 (2001) 2449-2476.  
[31] A.T. Charlson, N.A. Zeliadt, E.V. Wattenberg, Extracellular signal regulated kinase 5 mediates 



5

1234567890‘’“”

ACMME 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 394 (2018) 022023 doi:10.1088/1757-899X/394/2/022023

 
 
 
 
 
 

signals triggered by the novel tumor promoter palytoxin, Toxicol. Appl. Pharmacol. 241 
(2009) 143-153. 

[32] I. Dan, N.M. Watanabe, A. Kusumi, The Ste20 group kinases as regulators of MAP kinase 
cascades, Trends. Cell. Biol. 11 (2001) 220–230. 

[33] B.A. Ballif, J. Blenis, Molecular mechanisms mediating mammalian mitogen-activated protein 
kinase (MAPK) kinase (MEK)-MAPK cell survival signals, Cell. Growth. Differ. 12 (2001) 
397–408. 

[34] S.M. Greenberg, E.H. Koo, Secreted β-amyloid precursor protein stimulates mitogen-activated 
protein kinase and enhances tau phosphorylation, Proc. Natl. Acad. Sci. U S A. 91 (1994) 
7104-7108. 

[35] B.T. Hyman, T.E. Elvhage, J. Reiter, Extracellular signal regulated kinases. Localization of 
protein and mRNA in the human hippocampal formation in Alzheimer's disease, Am. J. 
Pathol. 144 (1994) 565-572. 

[36] J.Q. Trojanowski, M. Mawal-Dewan, M.L. Schmidt, Localization of the mitogen activated 
protein kinase ERK2 in Alzheimer's disease neurofibrillary tangles and senile plaque neurites, 
Brain. Res. 618 (1993) 333-337. 

[37] K. Mielke, T. Herdegen, JNK and p38 stress kinases-degenerative effectors of signal 
transduction cascades in the nervous system, Prog. Neurobiol. 61 (2000) 45-60. 

[38] X. Zhu, A.K. Raina, C.A. Rottkamp, Activation of P38 kinase links tau phosphorylation, 
oxidative stress and cell cycle-related events in Alzheimer disease, J. Neuropathol. Exp. 
Neurol. 59 (2000) 880-888. 

[39] S. Oddo, A. Caccamo, K.N. Green, Chronic Nicotine Administration Exacerbates tau Pathology 
in a Transgenic Model of Alzheimer's Disease, Proc. Natl. Acad. Sci. U S A. 102 (2005) 
3046-3051. 

[40] W. Kolch, Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by 
protein interactions, Biochem. J. 351 (2000) 289-305. 

[41] T. Cai, H. Che, T. Yao, C. Huang, Manganese Induces tau Hyperphosphorylation through the 
Activation of ERK MAPK Pathway in PC12 Cells, Toxicol. Sci. 119 (2011) 169-177. 

[42] G. Perry, H. Roder, A. Nunomura, Activation of extracellular receptor kinase (ERK) in 
Alzheimer's disease links oxidative stress to abnormal tau phosphorylation, Neuroreport. 10 
(1999) 2411-2415. 

[43] A. Noël, I. Poitras, J. Julien, F.R. Petry, ERK (MAPK) does not phosphorylate tau under 
physiological conditions in vivo or in vitro, Neurobiol Aging. 36 (2015) 901-902. 

[44] C.R. Weston, R.J. Davis, The JNK signal transduction pathway, Curr. Opin. Genet. Dev. 12 
(2002) 14-21.  

[45] C. Ploia, X. Antoniou, A. Sclip, JNK plays a key role in tau hyperphosphorylation in 
Alzheimer's disease models, J. Alzheimers. Dis. 26 (2011) 315-329.  

[46] X. Zhu, A.K. Raina, C.A. Rottkamp, Activation and redistribution of c-jun N-terminal 
kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease, J. 
Neurochem. 76 (2001) 435-441. 

[47] H. Yoshida, C.J. Hastie, H. Mclauchlan, Phosphorylation of microtubule-associated protein tau 
by isoforms of c-Jun N-terminal kinase (JNK), J. Neurochem. 90 (2004) 352-358. 

[48] C.J. Leugers, K.J. Yong, W. Hong, Tau in MAPK activation, Front Neurol. 4 (2013) 353-365.  


