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Abstract. In this work, sugar palm nanocrystalline cellulose (SPNCCs) nanocomposites were 
prepared and used as a biodegradable reinforcement material to improve the water vapor barrier 
properties of the sugar palm starch (SPS)-based films. SPNCCs with different size based on 
hydrolysis time (30, 45 and 60 minutes denoted as SPS/SPNCCs-30, SPS/SPNCCs-45, and 
SPS/SPNCCs-60) were incorporated into SPS plasticizes with glycerol and sorbitol using 
solution casting method. Then the SPS and SPS/SPNCCs bionanocomposites were submitted to 
biodegradation by means of soil burial experiment and water vapor barrier test. The 
biodegradation test shows that SPS degrades very quickly than SPS/SPNCCs which lose 61.93% 
of its weight at the end of 7 days compared to the SPS/SPNCCs-60 bionanocomposite 52.61%. 
Adding 0.5 wt.% SPNCCs-60 loading significantly improve water vapor permeability (WVP) of 
the nanocomposite film by 19.94% compared with the neat film. This was ascribed to the high 
compatibility between SPNCCs and SPS matrices, which was supported by the field emission 
scanning electron microscopy (FESEM). 

1. Introduction  
Nowadays many researchers are developing fully biodegradable composites or biocomposite due to the 
continuing environmental catastrophe caused by non-biodegradable plastics. Generally, these 
biocomposites are composed of either natural matrices or natural fibres [1]. Thus in order to overcome 
this problems, natural biopolymers such a starch, polylactic acid (PLA) and polyhydroxyalkanoates 
(PHAs) are introduced as a potential alternatives to conventional plastics for packaging applications [2].  

Starch is one of the potential candidates for the replacement of non-biodegradable plastic due to 
its ease availability, renewability, affordable and most importantly biodegradable [3]. Besides, these 
biopolymer also has been explored widely for the potential manufacture of products such as food and 
fruit packaging films, plastic shopping bags, flushable linter, medical delivery system and device [2,4]. 
Nevertheless, the utilization of starch polymer as a films have been reported to have low water barrier 
properties [5-6] . Thus, many studies have been conducted to improve the water sensitivity of starch-
based materials without negotiating their biodegradability [7–9]. Consequently to overcome this 
limitations, the addition of nanosize natural fibres during the preparation of starch biopolymer film is an 
effective strategy for enhancement of the packaging films properties [10]. Nanosize natural fibres such 

http://creativecommons.org/licenses/by/3.0
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as nanocrystalline celluloses (NCCs) and nanofibrillated celluloses (NFCs) can be extracted through the 
process of chemical and mechanical methods. Hydrolysis is one of the chemical methods that widely 
used to extract NCCs. Recently, NCCs has attracted a tremendous interest in material science study due 
its nanodimension, high crystallinity, high aspect ratio, high mechanical strength, low density as well as 
easy availability along with highly abundant [2, 11]. Moreover, the addition of NCCs has been reported 
to reduce the water vapor permeability of starch based film. This may due to the morphology of NCCs 
which increased the tortuosity in the starch based films leading to slower water vapor permeability 
processes, thus increasing their suitability for food packaging application [12]. 

Various types of nanosize cellulosic reinforcement have been determined and experienced in 
biopolymers. Interestingly, it was found that the compatibility between nanosize fibres and starch matrix 
is high, which is significant for improvement of the film water sensitivity [7]. Nanosize fibre or 
nanocrystalline cellulose (NCCs) can be isolated from biomass like jute [13], hemp [10], bamboo [14], 
corncob [15] and sugar palm [16]. Sugar palm is investigated to be a good source of cellulose fibres 
because of its high cellulose content, which then this cellulose was extracted to gain NCCs [16-17]. 
Sugar palm tree is versatile tree that grown in mostly tropical countries. Interestingly, the inner part of 
sugar palm stem contains starch which can be utilized as a biomatrix [18]. In this paper we developed a 
novel biodegradable bionanocomposites where the matrix (SPS) and nanofibre (SPNCCs) are derived 
from the similar natural source i.e sugar palm tree.   

One of the potential application of SPS/ SPNCCs bionanocomposites is it can be used in 
packaging industries. The degradation is one of the indicator of packaging durability. Since there are no 
information on the biodegradability of SPS/SPNCCs bionanocomposites has been reported in the 
literature, therefore in this study is done to investigate how the addition of the various size of sugar palm 
nanocrystalline cellulose (SPNCCs) enhances the water vapor permeability and its effect on 
biodegradability of the sugar palm starch film and bionanocomposites. These basic data therefore are 
essential for the design and use of the resultant bionanocomposite. 

2. Experimental procedure 

2.1.    Materials 
Sugar palms fibre (SPF) and sugar palm starch (SPS) were extracted and collected from sugar palm trees 
located in Jempol, Negeri Sembilan (Malaysia). Sodium hydroxide, sodium chlorite (80 % purity), acetic 
acid, sulphuric acid (98 % purity), sorbitol and glycerol plasticizer were supplied by Evergreen Sdn Bhd 
(Semenyih, Malaysia).  

2.2.   Preparation of SPNCCs 
Sugar palm fibres (SPF) were collected from different part of sugar palm trees (sugar palm frond, trunks, 
fibre and bunch) as it wrapped around the tree from top to bottom. The knife was used to remove the 
SPF from the tree. Then a Fritsch pulverisette mill was used for grinding and screening to gain an even 
size of SPF (2 mm). The cellulose preparation procedures  were reported elsewhere [7, 16, 19]. Briefly, 
the SPF were extracted using two main processes known as delignification and mercerization. The initial 
and second processes of production of sugar palm cellulose (SPC) were conducted in accordance with 
ASTM D1104-56 (1978) and ASTM D1103-60 (1977) for the removal of lignin and hemicellulose, 
respectively, resulted in production of sugar palm celluloses (SPC). Colloidal suspensions of SPNCCs 
were prepared by acid hydrolysis treatment of SPC. The SPC were mixed with 60 wt% sulphuric acid 
aqueous solution at variable hydrolysis time of 30, 45, and 60 minutes with the ratio of the SPC to liquor 
was 5:100 (wt%). The excess sulphuric acid was then removed by centrifuge SPNCCs 5 times with 
6,000 rpm, 10 min at 8 oC. Then SPNCCs were dialyzed with distilled water until a constant pH of 7 
was gained. The resulting suspension were sonicated using ultrasonic treatment for 30 minutes [20]. 
Finally SPNCCs were freeze-drying to be used for nanocomposite film. 

2.3.    Preparation of the SPS/SPNCCs nanocomposite films 
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The fabrication of plasticizer sugar palm starch/ sugar palm nanocrystalline celluloses (SPS/SPNCCs) 
composite film was based on a solution casting methods. Starch, sorbitol, glycerol, SPNCCs and distilled 
water were mixed and sonicated together in order to obtain homogenous nanocomposite film [7]. 
Briefly, a solution of SPNCCs was prepared by mixing and sonicating it with 190 mL of distilled water 
with known concentration of SPNCCs (0.5 wt. % on the starch basis). The SPNCCs content was fixed 
at 0.5 wt. % based on the starch basis.  Then, ten gram of SPS and plasticizer (30% on the starch basis) 
was mixed with the SPNCCs solution and stirred at 1000 rpm for 20 minutes at 85 oC in a disperser for 
the starch to be gelatinized. The ratio of plasticizer used is 1:1 with combination of sorbitol and glycerol 
ratio. Then the film-forming suspension was left cooling down and placed it under vacuum to remove 
air bubble inside the suspension before 45 g of the suspension was cast into each petri dish sized of 15-
cm diameter. The petri dishes containing the film-forming solution were placed in an oven at 40oC 
overnight. SPS films prepared without SPNCCs served as the control (designed as SPS film). Whereas 
the nanocomposite film with different hydrolysis time of 30 min, 45 min and 60 min were denoted as 
SPS/SPNCCs-30, SPS/SPNCCs-45, and SPS/SPNCCs-60, respectively. The resulting films were kept 
in the desiccator at room temperature for one week to ensure the equilibrium of the water content in the 
films before doing any characterization.         

2.4.    Morphology analysis by FESEM 
Surface characteristics of the SPS and SPS/SPNCCs films were determined by a FEI NOVA NanoSEM 
230 machine (FEI, Brno-Černovice, Czech Republic) with an accelerating voltage of 3 kV in order to 
observe the degradation phenomenon after the biodegradability test. Before being tested by FESEM, 
samples were cut into 1cm × 1cm and then coated with gold to avoid charging using an argon plasma 
metallizer (sputter coater K575X) (Edwards Limited, Crawley, United Kingdom) [21]. 

2.5.    Morphology analysis by TEM 
The structure and diameter measurement of sugar palm nanocrystalline cellulose (SPNCCs) were 
determined by Hitachi H-7100 transmission electron microscopy (Hitachi, Tokyo, Japan). These image 
captured of the sample was obtained from high-resolution transmission electron microscopy (HRTEM). 
Before being tested by HRSEM, samples were placed on the surface of copper grid coated with a thin 
carbon film. After that the samples were stained with uranyl acetate for 1 min and allowed to dry at 
room temperature. The purpose of staining is to get better visualize and contrast image under a TEM. 

2.6.    Water absorption 
Water absorption analysis was run in accordance to ASTM D 570-98. Firstly, the samples were dried 
for 24 h at 50 oC and cooled in desiccator to gain an even weight. Then the films were weighed and 
soaked in distilled water at room temperature. After a particular soaking period, the films were taken 
out of the water and wiped with a cloth and weighed again. The differences between the initial and final 
masses of the films were calculate using equation [22]: 

                                          ����� ���	�
��	�  (%) =

������
�������


�������
× 100                                  (1) 

 
Where, M initial = mass before, M final = mass final 

2.7. Biodegradability test 
Biodegradability was determined by measuring the weight loss of the bionanocomposite buries in 
compost soil under moisture controlled condition. The size of samples of 30 × 10 mm with triplicate of 
each samples were buried 100 mm below the surface of soil, which was regularly  moistened with 
distilled water [1]. Each sample was dug out of the compost soil after being buried for 24, 48, 72 and 
168 h, respectively, and then washed with water and dried to a constant weight at 60 oC in a vacuum 
oven. The weight loss was then determined using the equation below: 

                                                       ����ℎ� �	�� (%) =
�����

��
× 100                                          (2) 
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Where, W0=weight before being buries, Wt= weight after being buried. 

2.8. Water vapor permeability (WVP) test 
The film samples were conditioned in a desiccator with a relative humidity of 50% at room temperature. 
The WVP test was investigated according to ASTM E96 (1995), with slight modifications according to 
Sanyang et al. [23]. The experiment was repeated thrice. Initially, the mouth of the cup which was 30 
mm was filled with 20 g of silica gel. Circular film samples were cut and placed over the mouth of the 
cup, leaving about 3 mm vacuum to the top. Then it was sealed neatly. After that, the test cups were 
measured it mass before placing in a constant relative humidity chamber (25oC, relative humidity 75%). 
The mass gain values of the cups were measured periodically until the equilibrium state was reached. 
The mass increment of the test cups were recorded, and WVP was calculated as below, 

                                                              ��� =
(�×�)

(�×�×!)
                                                           (3) 

Where m (g) is the increment of test cup mass, d (mm) is the thickness of the films, A (m2) is the area of 
film exposed, t (s) is the interval time of permeation, and P (Pa) is the water vapor partial pressure across 
the films. The results are in the unit of 10�" × �. ��#. $�#. ���#. 

3. Experimental result and discussion 

3.1.    Physical Properties of Sugar Palm Nanocrystalline cellulose (SPNCCs) 
The physical properties of the sugar palm nanocrystalline cellulose (SPNCCs) from different treatment 
was determined using Image J software. The images were collected from the TEM analysis. 
 

 

Figure 1. TEM micrographs of the (a) SPNCCs-30, (b) SPNCCs-45 and (c) 
SPNCCs-60. 

 
 

 

 
 

Table 1. Physical Properties of SPNCCs-30, SPNCCs-45 and SPNCCs-60. 

Fibres Length (nm) Diameter (nm) 
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Sugar Palm Cellulose (SPC)  - 11870 
SPNCCs-30 175± 37.01 13±1.73 
SPNCCs-45 130 ± 30.23 9± 1.96 
SPNCCs-60 110± 33.69 7.5±1.35 

 

Figure 1 and Table 1 show the TEM micrograph and physical properties of nanocrystalline cellulose, 
respectively. TEM micrograph of sugar palm nanocrystalline cellulose (SPNCCs) (Figure 1) revealed 
their nanometric dimension. As shown in Table 1, the average length of the SPNCCs-30, SPNCCs-45 
and SPNCCs-60 were approximately 175± 37.01 nm, 130 ± 30.23 nm and 110± 33.69, respectively. 
Whereas the diameter of the SPNCCs-30, SPNCCs-45 and SPNCCs-60 were approximately 13±1.73 
nm, 9± 1.96 nm and 7.5±1.35 nm, respectively. The diameter measured were similar to the nano-sized 
structures that were extracted from other agro-waste sources such as coconut husk (5.5 ± 1.5 nm) [24], 
rice straw (5.06 nm) [25], soy hulls (4.43 ± 1.20 nm) [26], sugarcane bagasse (4 ± 2 nm) [27], banana 
residues (5nm) [28] and smaller than microfibrils from wheat straw (10–80nm) [29], sisal fibres (30.9 ± 
12.5 nm) [30] and sugarcane bagasse (30nm) [31]. These resultant images (Figure 1) revealed the 
aqueous suspensions contained sugar palm NCCs residing mostly of individual crystal and some 
aggregates. 

 

Figure 2. Length and diameter of SPNCCs-30, SPNCCs-45 and SPNCCs-60. 
 
Figure 2 shows the length and diameter of SPNCCs-30, SPNCCs-45 and SPNCCs-60. The differences 
between the SPNCCs-30, SPNCCs-45 and SPNCCs-60 were in the reduction of size of length and 
diameter. Based on Table 1, the reduction of the SPNCCs-30 compared to SPC was 99.89%. This was 
attributed by the removal of the amorphous region via the hydrolysis treatment on SPC [16]. The process 
of the hydrolysis continued for the SPNCCs-45 and SPNCCs-60 for 45 minutes and 60 minutes, 
indicated the changes in the size of the SPNCCs which was reduce by 31% and 42% compared to 
SPNCCs-30, respectively.  This was caused by the longer reaction time of H2SO4 via hydrolysis 
treatment on the fibres, which removed amorphous region from the nanofibres. Besides, longer 
hydrolysis time could irritate the structure (length and diameter) of SPNCCs. Thus, the longer the 
reaction times of hydrolysis, the smaller the length and diameter of the nanofibres [32].  
 

3.2. Water absorption 
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Figure 3. Water absorption of composite. 
  
Water absorption is a significant study in SPS film due to water acts as a plasticizer. Figure 3 displays 
the percentage of water absorption of SPNCCs-30, SPNCCs-45 and SPNCCs-60 nanocomposite films. 
As been shown in Figure 3, it can be seen that the neat SPS gave the highest percentage of water 
absorption, followed by SPS/SPNCCs-30, SPS/SPNCCs-45, and SPS/SPNCCs-60, i.e. 111.3 %, 106.6 
% and 102.5 %, respectively. This indicated that film reinforced with SPNCCs has lower hydrophilicity. 
Moreover, the water absorption of the film is high due to the presence of hydroxyl groups in film 
molecules. Film with higher concentration of starch is tend to absorb more water compared to film that 
have low concentration of starch [1]. Besides that, as the size of SPNCCs decreased, the percentage of 
the water absorption also decreased. Additionally, film with big particle size of SPNCCs exhibited 
greater tendency to absorb water which possibly due to a lower response to stress [33]. In this study, 
water absorption tests revealed that stabilizing the mixtures with SPNCCs decreased the water 
absorption capacity. This is due to the adhesion between the SPNCCs and SPS in which they tend to 
form strong hydrogen bonding via the physical interlocking with non-polar matrices and the OH- groups 
if hydrophilic polymer matrices [34-35].  The result of this experiment conducted are quite similar to 
those from previous work [1]. 

3.3. Biodegradation of bionanocomposites 
Biodegradation is the decomposition of materials by the action fungi, bacteria and microorganism or by 
other biological means. Generally, the decomposition of polymer start when these microbial organism 
contact with the biodegradable polymer [36]. These microbial organisms transform the polymer through 
enzymatic or metabolic process that broken down the polymers into smaller compound which have 
lower average molecular weight. Therefore, this favors material’s decomposition in the environment. 
When the biodegradation is complete, the process is called mineralization [37]. Figure 4 shows the 
weight loss of the SPS and SPS/ SPNCCs bio-nanocomposite after biodegradation testing. At the end of 
day 7, the weight of neat SPS had lost 61.94%, whereas the SPS/SPNCCs bionanocomposites had lost 
56.88  %, 55.74 % and 52.61 % weight for SPS/SPNCCs-30, SPS/SPNCCs-45, and SPS/SPNCCs-60, 
respectively. The average degradation rate is 8.85 %/day, 8.13 %/day, 7.96 %/day and 7.52 %/day, 
respectively for the neat SPS, SPS/SPNCCs-30, SPS/SPNCCs-45, and SPS/SPNCCs-60, respectively. 
It is observed that the weight loss of SPS/SPNCCs composite is lower than that of the SPS at any given 
time points. 
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Figure 4. Weight loss of SPS/SPNCCs composite films as a function of soil burial time. 
 

The control film, SPS film was totally degrade after 9 days while it took bio-nanocomposites 
films 12 days to degrade completely. The weight loss of for the neat matrix was higher compared to the 
bio nanocomposite films. There are two factors that may be attributed to this situation to occur which 
are water absorption by film and degree of crystallinity of SPNCCs in bio-nanocomposite films.  
SPNCCs facilitated the polymer matrix with a stabilization effect by creating a three-dimensional 
cellulosic network which restricted the chain mobility and reduced the number of hydroxyl groups, and 
thus reduced water absorption of SPS/SPNCCs nanocomposite films [38-39]. The weight loss for the 
control film, SPS was higher compared to the SPS/ SPNCCs bionanocomposite for the entire successive 
degradation test. This may be attributed to the physical properties of SPS which SPS absorb more water 
than SPS/ SPNCCs films, making it more exposed to microbial organisms attack  [41]. These microbial 
organisms attack the SPS in the presence of water medium [42]. This can be related to the water 
absorption properties of starch films, where the water absorption for neat SPS was about 122.3 %, 
whereas for SPS/SPNCCs-30, SPS/SPNCCs-45, and SPS/SPNCCs-60 bionanocomposite films were 
111.3 %, 106.6 % and 102.5 %, respectively. This properties could be attributed to the hydrophilic 
behavior of SPS [41]. Thus, the samples that have higher starch contents would have better 
biodegradability properties. 

Generally cellulose is comprised of amorphous (less-oriented molecules) and crystalline region 
(highly oriented molecules). When it was treated with strong acid via hydrolysis process, the amorphous 
region broke up, thus producing NCCs with higher degree of crystallinity. The capability of cellulolytic 
microorganisms to degrade cellulose differs greatly with the physic-chemical characteristics of the 
substrate such as polymerization of cellulose and the degree of crystallinity [43], where the degree of 
crystallinity cellulose is major structural parameter [44]. It has been described in a previous work that 
crystalline region are more difficult to degrade [45]. Compared to control film SPS, SPS/SPNCCs 
contained higher crystallinity, which makes it a higher resistance to the microbial organism attacks than 
starch. This may attributed the difference in weight loss between SPS and the SPS/ SPNCCs 
bionanocomposite. Moreover, the variances in resistance to microbial organism attacks between SPS/ 
SPNCCs and starch SPS exhibited that in SPS/SPNCCs bionanocomposite, microbial organism attacks 
start with starch. In the case of SPNCCs/ starch, the amorphous region favors the microbial organism 
accessibility to the matric (mainly to the deterioration of starch) and SPNCCs have the minor role, as 
can be concluded from the difference in weight loss suffer by the SPS and the SPS/SPNCCs matrix [1]. 

When the microbial organisms consume the surrounding starch, the bionanocomposite film loses 
their structural integrity. Thus lead to the deterioration of the mechanical properties, hence allowing the 
attack of SPNCCs by microbial organism [46]. Indeed, the result gained herein shows that the 
SPS/SPNCCs bionanocomposite film will not cause any deterioration/ ecological impact, where in other 
words, the SPS/SPNCCs bionanocomposite film are fully biodegradable. 
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3.4. Water Vapor Permeability 
Hydrophobicity are one of the most important criteria that should be emphasize in the process of material 
selection for food packaging application, since it may affect the performance of the end products whether 
the product is water-sensitive product or not. Therefore, films with low water vapor permeability are 
suitable for food packaging applications, including the reducing and preventing of moisture transfer 
between surrounding and the food [47]. Hence, minimizing the water vapor permeability (WVP) of SPS 
films is important for their tremendous potential application. Figure 5 shows the WVP of neat SPS and 
SPS/NCCs composite film as a function of soil burial time. It can be seen that the highest WVP is SPS 
film which is 9.58 × 10�#& × �. ��#. $�#. ���#. This is because of their hydrophilic nature, besides 
their sensitivity to moisture contain and surrounding humidity, a factor that is hard to control [48]. The 
reinforcement of starch with SPNCCs significantly improved the WVP of the neat SPS films. The 
addition of 0.5% SPNCCs into neat SPS films reduced their WVP value by 11.17 %. This decreased is 
due to the tortuous path caused by the presence of rigid crystalline structure and the dispersion of 
SPNCCs in the starch polymer, which prolongs or hinders the path of water molecules through the film 
matrix [7,49]. The WVP of the film showed an improved of 11.17 %, 14.72 % and 19.94 %, when 
altering the size of the SPNCCs reinforced bio matrix, SPS/SPNCCs-30, SPS/SPNCCs-45, and 
SPS/SPNCCs-60, respectively. This increments trending showed that the smaller the size of the 
nanofibres the harder the water to pass through the matrix SPS, thus improved the WVP of the neat SPS 
films. 

 

Figure 5. Water Permeability of SPS/SPNCCs composite films as a function of soil burial time. 
 

3.5. Surface Morphology of Bionanocomposite Film 
Figure 6 displayed the surface morphology of SPS-based films with and without the addition of SPNCCs 
after being degraded in soil test for 168 h. From the figure 6, it can be observed that most of the starch 
had degraded in both SPS and SPF/SPS bionanocomposite which was observed using FESEM. 
Nevertheless, this effect of degradation can be observed on the weight loss of the bionanocomposite, as 
explained earlier and observed in figure 4. Therefore it can be concluded that the addition of SPNCCs 
delays the degradation of the bionanocomposite. The micrograph of the neat SPS films showed a smooth 
and continuous surface with no trace of starch granular or cracks and agglomerations of SPNCCs. 
Similar observations were reported by Sanyang et al. (2016) and Dias et al. (2011) for neat sugar palm 
starch and rice flour films, respectively. Thus, the high dispersion of SPNCCs (Figure 6(b)) is a good 
sign of strong interfacial adhesion between the two components of the SPS-SPNCCs nanocomposite 
film. These good distributions translate into high WVP properties. Bilbao-Sainz et al. (2011) described 
that the functional properties of the composite improved when the fibres well-dispersed into the 
polymeric matrix.  Besides, in Figure 6 (b) of neat SPS film after the process of degradation take place, 
the surface of the film become rough and wavy due to the microbial attack within the soil. Whereas in 
Figure 6 (b) of SPS/SPNCCs film observed the present of excessive numbers of SPNCCs distributed on 
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the surface of SPS/SPNCCs film. This is due to the attacks of microbial on the surface of film which 
then revealed the image of SPNCCs that adhere within the film [1]. 
 
 

 

Figure 6. Surface morphology of SPS and SPF/SPNCCs bionanocomposite; a) before 
and b) after being buried. 

 
4. Conclusion 
An innovative bionanocomposite with combination of both matric and natural fibres are obtained from 
less utilize of the sugar palm tree was successfully developed. It was determined that the WVP effect on 
the SPS and SPS/SPNCCs bionanocomposite had brought a significant improvement when decrease the 
size of the SPNCCs reinforced bio matrix, at the end of 168 h of WVP test. Whereas, the biodegradation 
test revealed that the SPS degraded faster as compared to SPS/SPNCCs bionanocomposites. Thus, this 
bionanocomposite shows good WVP and biodegradable properties for packaging materials application. 
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