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Abstract. In this study sesame liposomes were used to encapsulate both vitamin C and beta-
carotene simultaneously. Liposomes were prepared with addition of cholesterol. The 
encapsulation efficiency (EE) of sesame liposomes for vitamin C in the present of beta-carotene 
was 77%. The addition of cholesterol increased the encapsulation efficiency. The highest 
encapsulation efficiency was 89% obtained in liposomes with 10% and 20% cholesterol. 
Contrary to that, the highest beta-carotene encapsulation efficiency of 78%, was found in the 
sesame liposomes prepared without the added cholesterol. Results showed that sesame liposomes 
can be used to encapsulate beta-carotene and vitamin C simultaneously. When beta-carotene and 
vitamin C were encapsulated concurrently, cholesterol intensified the efficiency of vitamin C 
encapsulation on the contrary it diminished the efficiency of beta-carotene encapsulation. 

1.  Introduction 

Ascorbic acid or vitamin C is an antioxidant needed in human bodies [1-5]. Vitamin C serves to reduce 
the risk of cancer (such as prostate and gastric cancer) and cardiovascular diseases  [6-8]. Therefore, 
vitamin C is an important nutrient that is widely consumed [9]. Not only vitamin C, beta-carotene also 
acts as an antioxidant which is needed by human bodies [4, 5]. Beta-carotene is a pro vitamin A that 
prevents vitamin A deficiency [10-12]. Beta-carotene serves to reduce the risk of lung cancer and 
cardiovascular diseases, and eye deseases [5, 13, 14]. However, vitamin C and beta-carotene have 
disadvantages which may reduce their benefits. The role of vitamin C may be disrupted due to its high 
reactivity and its poor stability in solutions. Vitamin C may also easily be oxidized by the presence of 
oxygen, which is catalyzed by transition metal ions such as iron and copper [15]. Beta-carotene is a 
highly hydrophobic compound with high melting point, low chemical stability, and low bioavailability 
[16, 17]. These disadvantages can be overcome by the encapsulating vitamin C and beta-carotene in 
liposomes. Liposome is able to protect vitamin C from being oxidized and increases its stability [18, 
19]. Liposome may increase the bioavailability and the stability of beta-carotene [20]. 

Liposome is a lipid vesicle which contains hydrophilic core and hydrophobic bilayer membrane [21, 
22]. Its biocompatible structure and characteristics make it possible to be utilized as a drug delivery 
system [23-25]. Liposomes can encapsulate hydrophobic compounds inside its bilayer membrane and 
hydrophilic compound inside its core [21]. Some evidences have demonstrated that liposome is able to 
encapsulate beta-carotene and vitamin C singly [18, 19, 26]. Liposome is mostly built up by amphiphilic 
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molecules such as phospholipids [27]. Phospholipid can be isolated from natural materials, like egg, 
soybean, coconut, and sesame seeds [28-30]. Phospholipid will create double layers similar to biologic 
membrane [31, 32]. The stability of liposomes can be optimized by adding cholesterol [33, 34]. 
Cholesterol is able to reduce the permeability of the membrane and rigidify the fluidity of the intravesical 
interaction [35, 36]. 

This research was conducted to investigate the capability of the sesame liposomes in encapsulating 
both beta-carotene and vitamin C simultaneously. The liposomes analysis was done by calculating the 
value of encapsulation efficiency (EE) and analyzing the influence of cholesterol towards the 
encapsulation efficiency value. Our new finding was that sesame liposomes can be used to encapsulate 
both beta-carotene and vitamin C simultaneously. When beta-carotene and vitamin C were encapsulated 
concurrently, cholesterol amplified the efficiency of vitamin C encapsulation but cut down the efficiency 
of beta-carotene encapsulation. 

2.  Materials and method 

2.1.  Materials 

The materials used in this research were isolated sesame phospholid (Sesamum Indicum L.), chloroform 
p.a (Merck No.Batch 1.02445.2500), ethanol 96% (Brataco), cholesterol (Sigma Aldrich No. 11145-
50G), vitamin C uncoated (Brataco No. Batch 1140870083), beta-carotene (Sigma No. C4582-25MG), 
soy phospholipid (Sigma Aldrich No. P3644-100G), Na2HPO4.2H2O (Merck No. Batch 2121439), 
NaH2PO4.2H2O (Merck No.Batch 1.06342.0250), demineralized water (Brataco).  

2.2.  Encapsulation beta-caroten and vitamin C in liposomes 

The preparation of liposomes was done according to the method by Hudiyanti et al. (2015) with the 
addition of cholesterol 0%, 10%, 20%, 30%, 40% (w/w). Before creating the liposomes, the partition 
coefficient of vitamin C and beta-carotene was determined using MarvinSketch program.  It was done 
by making thin layer, hydration, and ultrasonication. Beta-carotene was added to phospholipid with ratio 
20% (w/w). Cholesterol was added to the mixture with ratio as above. The mixture was dissolved in 
chloroform to prepare thin layer. Vitamin C in phosphate buffer solution was added in the hydration 
process. Liposome's capability in encapsulating beta-carotene and vitamin C, and the influence of 
cholesterol towards its efficiency can be calculated by encapsulation efficiency value. The solution was 
centrifuged in order to separate the encapsulated molecules from those which was not encapsulated 
inside the liposomes. The supernatant which contained unencapsulated molecules (Ct) was analyzed by 
using spectrometer UV-Vis at the wavelength of vitamin C (265 nm) and beta-carotene (453 nm). The 
encapsulation efficiency of the vitamin C and beta-carotene was determined by equation 1.  

EE = [1- (Ct/ C0)] x 100%....... (1) 

3.  Result and discussion 

3.1.  The encapsulation efficiency of vitamin c 

The encapsulation efficiency value of vitamin C in the sesame liposomes was 88%. Cholesterol reduced 
the encapsulation efficiency of vitamin C as shown in the Figure 1. This reduction maybe caused by the 
sludge resulted from centrifugation. During the centrifugation process, the particles inside the tube were 
separated and spread according to the specific weight of each particle by centrifugal force [37]. This 
sludge was unstable and could not be dispersed back to the supernatant. It affected the absorbance of 
vitamin C at 265 nm wavelength. The measured absorbance becomes higher hence the unencapsulated 
vitamin C concentration increased. As a result the encapsulation efficiency values were reduced. 
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Figure 1. The encapsulation efficiency value of vitamin C in 
sesame liposomes. 

 
The addition of 20% beta-carotene lowered the encapsulation efficiency value of the vitamin C 

inside the sesame liposomes to 77%. It was due to the big structure of beta-carotene with several double 
bonds. Beta-carotene interacted with sesame phospholipid which also contains many double bonds and 
created liposomes in the big shapes. As a result, there were less liposomes particles and encapsulated 
vitamin C. Cholesterol also unexpectedly increased the encapsulation efficiency of the vitamin C inside 
the sesame liposomes which contains beta-carotene as shown in Figure 2. Phospholipid which has been 
mixed by cholesterol has more well-ordered membrane. This regularity reduced the permeability of the 
membrane and rigidified the fluidity of the intravesical interaction, made it more effective in 
encapsulating a molecule [33]. 

 
 

 
 

Figure 2. The encapsulation efficiency of vitamin C in sesame 
liposomes which contains beta-carotene. 
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Figure 3. Sesame liposomes solution after centrifugation. The 
yellow solution represents sesame liposomes containing beta-
carotene and the white one was sesame liposomes solution which 
do not containing  beta-carotene. 

 
The effect of cholesterol towards the encapsulation efficiency of vitamin C in the sesame 

liposomes which contains beta-carotene was contradictory with the sesame liposomes with out beta-
carotene. It could happen because beta-carotene could increase the specific weight of the sediment after 
centrifugation process, so the sediment became more stable (Figure 3).  
 

The encapsulation efficiency value of vitamin C inside non cholesterol soy liposomes without 
and with beta-carotene was 78% and 84% respectively. Cholesterol increased the encapsulation 
efficiency value of the soy liposomes with or without beta-carotene as seen in Figure 4. 

 
 

 
 

Figure 4. The encapsulation efficiency of vitamin C in soy 
liposomes. 

 
The encapsulation efficiency of vitamin C inside sesame and soy liposomes with beta-carotene 

has increased compared to those without beta-carotene. The partition coefficient of beta-carotene which 
was 11,12 suggested that this compound would resided inside liposomes membrane. Meanwhile vitamin 
C with partition coefficient -1,91 would be in the hydrophilic part or liposomes core. Beta-carotene can 
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alter membrane microviscosity, hydrophobicity, membrane permeability, and also protect phospholipid 
from being oxidized [38]. 

3.2.  The encapsulation efficiency of beta-carotene 
The encapsulation efficiency of beta-carotene inside sesame liposomes was 79%. The addition of 
cholesterol reduced the encapsulation efficiency of beta-carotene inside sesame liposomes as shown in 
Figure 5. This reduction was caused by the high competition between cholesterol and beta-carotene to 
be in the liposomes membrane [38]. It would decreased the concentration of beta-carotene inside the 
sesame liposomes membrane. The position of beta-carotene and cholesterol in the sesame liposomes 
membrane was predicted as shown as in Figure 6. Although both cholesterol and beta-carotene competed 
to be in the bilayer membrane, cholesterol could easily adapt compared to beta-carotene, due to its tiny 
shape and amphiphilic characteristic like phospholipid [38, 39]. 
 

 
 

Figure 5. The encapsulation efficiency of beta-carotene in 
sesame liposomes.  

 

 
 

Figure 6. Prediction of position of beta-carotene and cholesterol 
in sesame liposomes membrane. 
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The results also showed that the encapsulation efficiency value of beta-carotene in sesame 

liposomes with or without loaded vitamin C was similar (Figure 5). It can be concluded that vitamin C 
did not affect the encapsulation efficiency value of beta-carotene. 

Cholesterol showed the same effect on soy liposomes and sesame liposomes encapsulation 
efficiency of beta-carotene. Cholesterol reduced the encapsulation efficiency value of beta-carotene as 
depicted in Figure 7. These results can be explained by the similar lipophilic part of the phospholipids 
[30]. The decrease in beta-carotene encapsulation efficiency is possibly due to competition between 
cholesterol and beta-carotene to reside in the liposomal bilayer membrane. 

 

 
 

Figure 7. The encapsulation efficiency of beta-carotene in soy 
liposomes  

4.  Conclusion 

The encapsulation efficiency of sesame liposomes for vitamin C in the present of beta-carotene was 
77%. Addition of cholesterol increased the encapsulation efficiency. The highest was 89% obtained in 
liposomes with 10% and 20% cholesterol. On the contrary, the highest beta-carotene encapsulation 
efficiency, i.e. 78%, was found in the sesame liposomes prepared without cholesterol. Sesame liposomes 
can be used to encapsulate both beta-carotene and vitamin C simultaneously. When beta-carotene and 
vitamin C were encapsulated concurrently, cholesterol increased the efficiency of vitamin C 
encapsulation but lowered the efficiency of beta-carotene encapsulation.  
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