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Abstract. Physics interaction models suited for Monte Carlo simulation of coupled electron-
photon transport in EPMA and other spectroscopic techniques are briefly described. The
considered models are required to be applicable to any material and valid for a wide energy
range. Differential cross-sections, the fundamental quantities in Monte Carlo simulation, are
presented for the relevant interactions of photons and electrons with energies up to about 500
keV. Approximations and simplifications underlying the interaction models and the particle
tracking scheme are discussed.

1. Introduction
It is generally believed that Monte Carlo (MC) simulation provides the most accurate description
of the coupled transport of electrons and photons in the energy range of interest in electron-probe
microanalysis (EPMA), X-ray fluorescence (XRF), and other X-ray spectroscopic techniques.
Although automatic Monte Carlo quantification tools are not widely available, simulation studies
have been used to calculate EPMA spectra and characteristic X-ray yields from bulk samples,
k-ratios from thin films on substrates, secondary fluorescence near planar interfaces, and the
lateral resolution of EPMA measurements [1].

Indeed, MC simulation has distinct advantages over alternative numerical (finite-difference)
methods. Firstly, it can describe arbitrary interaction processes, with an accuracy limited
only by that of the adopted interaction models, i.e., by the adopted differential cross-sections
(DCSs). Secondly, MC simulation is able to track particles through material systems with
complex geometries, where deterministic methods would find great difficulties even to define
the appropriate boundary conditions. Finally, the stochastic nature of MC methods permits
the straightforward evaluation of statistical (type A) uncertainties of simulation results, while
numerical methods allow only rough estimations of accumulated errors.

However, MC simulation methods are not free from simplifications and approximations, which
limit their applicability and the reliability of the results. A fundamental simplification refers to
the structure of the material where radiation propagates, which is assumed to be homogeneous
and isotropic, with defined composition and density. The atoms or molecules in the medium are
considered to be randomly distributed with uniform density (crystalline ordering is ignored) and
molecular aggregation effects are disregarded, i.e., molecules are regarded as sets of individual
atoms with uncorrelated positions. Only in the case of inelastic collisions of charged particles,
molecular binding and aggregation effects are partially accounted for by using empirical values

http://creativecommons.org/licenses/by/3.0
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of the mean excitation energies of materials, so as to ensure the correct high-energy collision
stopping power. Also implicit in any MC code is the assumption that the various interaction
mechanisms are effectively independent; reality is more complex, and the co-existence of multiple
time-evolution paths leads to quantum interference effects (such as inelastic absorption and
radiative effects in elastic collisions of charged particles), which are frequently disregarded, or
treated approximately as corrections to the DCSs of the dominant interactions.

In MC simulations, the trajectories of transported (primary and secondary) particles are
generated as sequences of connected free flights, each flight ending by an interaction that
may change the energy and direction of the particle. This trajectory picture is justified only
for high-energy radiation, whose de Broglie wavelengths are much smaller than the average
separation between the atoms in the medium. When the wavelength is comparable to the
interatomic distances, interference effects, resulting from the coherent superposition of waves
scattered by different atoms, may become important and invalidate the trajectory picture. In
addition, the tracking of particles is performed as if they were moving in an infinite, limitless
medium having the local composition; this way of operation implies that interfaces are considered
to be passive (thus excluding, e.g., surface plasmon excitations).

In the present article we describe physics interaction models suited for MC simulation of
coupled electron-photon transport, with the focus on the fundamental quantities and on the
underlying assumptions (and simplifications) that determine the reliability of the simulation
results. The relevant fundamental quantities are the interaction DCSs, which describe each
interaction mechanism, the corresponding total (integrated) cross-sections, and the atomic
transition probabilities and energies, which determine the X-rays and Auger electrons released
in the relaxation of atoms with vacancies in inner sub-shells. The interaction models described
here have been implemented in the general-purpose MC code penelope [2]. More detailed
information on theoretical aspects can be found in the article by Salvat and Fernández–Varea [3].
More recently, a review article on electron-impact ionisation and X-ray emission has been
published by Llovet et al. [4].

Owing to the wide energy range of interest, interactions are described using relativistic
quantum mechanics. For electrons (mass me, charge −e) with kinetic energy E and momentum
p = �k (� is the reduced Planck constant), we will frequently use the quantities

γ ≡ E +mec
2

mec2
=

√
1

1− β2 and β =
v

c
=

√
E(E + 2mec2)

(E +mec2)2
=

√
γ2 − 1

γ2
, (1)

which are, respectively, the total energy in units of the rest energy mec
2 and the velocity in units

of the speed of light c. The wave number and wavelength of the electron are

k = (c�)−1
√
E(E + 2mec2) and λ =

2π

k
=

12.398 Å√
(E/keV)[(E/keV) + 1022]

, (2)

respectively. The corresponding quantities for a photon of energy E are

k = (c�)−1E and λ =
12.398 Å

E/keV
. (3)

2. Interaction processes
A projectile particle (electron or photon) of energy E can interact with matter through a number
of different mechanisms. In the energy-range of interest in EPMA and other X-ray spectroscopies
(say from 500 eV to 500 keV), photons interact through the following processes:
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◦ photelectric absorption (ph),
◦ incoherent Compton scattering (Co), and
◦ coherent Rayleigh scattering (Ra).
The relevant interaction mechanisms of electrons are:
◦ elastic collisions (el),
◦ inelastic collisions (in), and
◦ bremsstrahlung photon emission (br).

Each individual interaction may involve a certain energy transferW to the material, a change
in direction of the projectile, and, occasionally, the prompt emission of a secondary particle. For
the sake of concreteness, we assume that before the interaction the projectile moves in the
direction of the z axis; the direction of motion after the interaction (as well as the directions
of any secondary particles released) are described by the polar and azimuthal angles, θ and φ,
respectively (see fig. 1). Each interaction process (pr) is described in terms of the so-called
differential inverse mean free path (DIMFP), d2μpr(E)/(dW dΩ), which gives the probability
density of having an interaction with energy loss W and angular deflection Ω = (θ, φ) per unit
path length of the projectile. Because of the assumed isotropy of the medium, the DIMFP is
independent of the azimuthal scattering angle φ. The inverse mean free path, defined by

μpr(E) =

∫
dW

∫
dΩ

d2μpr(E)

dW dΩ
, (4)

gives the interaction probability per unit path length of the projectile. Its reciprocal is the mean
free path between interactions of that type. The energy loss and the angular deflection in an
interaction are random variables with joint probability density given by

Ppr(E;W, θ, φ) =
1

μpr(E)

d2μpr(E)

dW dΩ
. (5)

z

y

x

T

θ

dΩ, dW

φ

p, E 

p

′, E   ′ = E — W 

Figure 1. Schematic diagram of an experiment to measure the DCS. Incident particles move
in the direction of the z axis; θ and φ are the polar and azimuthal scattering angles, respectively.

The details of the DIMFPs for condensed materials depend on the composition and structure
(or state of aggregation) of the medium. However, when the de Broglie wavelength of the
projectile [for electrons, λB = (150 eV/E)1/2 Å] is much less than the inter-atomic distances, the
DIMFPs are nearly independent of the molecular or solid structure. Under these circumstances,
the DIMFP can be estimated in terms of the atomic DCSs, d2σpr(Z,E)/(dW dΩ), of the elements
present by means of the additivity approximation. Concretely, the DIMFP for a compound (or
mixture) with ni atoms of the element of atomic number Zi per molecule is

d2μpr(E)

dW dΩ
= N

∑
i

ni
d2σpr(Zi, E)

dW dΩ
, (6)
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where N is the number of molecules per unit volume. For a material of mass density 	
and “molecular weight” Aw (g/mol), N = NA	/Aw, where NA is Avogadro’s number. Most
general-purpose MC codes utilise the additivity approximation with atomic DCSs defined by
numerical databases or given by analytical formulas. The approximation is acceptable for elastic
interactions. It is not accurate for inelastic collisions of charged particles, because these are
dominated by excitations of conduction and valence electrons whose response depend strongly
on the structure of the medium. Compton scattering of photons and photoelectric absorption
also present a certain dependence on the state of aggregation. In the following we assume that
the additivity approximation, with appropriate corrections, is applicable. That is, we consider
interactions of electrons and photons with individual atoms of an element of atomic number Z.

A fundamental quantity, which characterises the response of the material to external
electromagnetic fields and the distribution of energy losses in small-angle inelastic collisions
of charged particles, is the optical dielectric function ε(ω), a complex function of the angular
frequency ω of the field. It is related to the familiar refraction index, n(ω), and extinction
coefficient, κ(ω), by

n(ω) + iκ(ω) =
√
ε(ω), (7)

where the branch of the square root is the one yielding a non-negative n(ω). The main source of
measured optical dielectric functions is the Handbook of Optical Constants of Solids [5–7], which
includes tables of n(ω) and κ(ω) for a number of metals, semiconductors and insulators. These
tables contain measured data obtained with different methods, frequently by various groups
and with various degrees of accuracy, and cover ranges of excitation energies W = �ω from
about 10−3 eV up to an upper energy that depends on the material, typically about 100 eV. For
solids for which experimental information is not available, approximate optical functions can be
obtained from density-functional theory calculations (see, e.g., [8]).

Because of the scarcity of experimental data, most MC codes use atomic DCSs that are
either given by analytical formulas derived from simple models and approximations or defined
by numerical databases generated by first-principles calculations. The latter are also affected
by a number of approximations. Typically they are based on a relativistic independent-electron
model of the atom, in which atomic electrons are assumed to move independently in a common
central potential V (r), and atomic wave functions are represented as single Slater determinants
built with one-electron central-field orbitals ψi(r) that are solutions of the Dirac equation with
the eigenvalues Ei. Notice that the one-electron energy spectrum consists of a discrete set of
levels (Ei < 0) corresponding to bound orbitals, and a continuum (E > 0) associated to free
orbitals. Many calculations use the self-consistent Dirac-Hartree-Fock-Slater (DHFS) model of
the atom (see, e.g., [9]). Compared with the more elaborate Dirac-Fock model [10], DHFS has the
advantages of giving one-electron eigenvalues Ei in closer agreement with experimental sub-shell
binding energies (see [3]) and of ensuring orthonormality of bound and free one-electron orbitals.
The target atom is characterised by its ground-state configuration, i.e., by the set of electron
sub-shells Si that are occupied, the number of electrons in each subshell, and the corresponding
binding energies Ui = −Ei.

2.1. Photon interactions

• Photoelectric effect

In the photoelectric effect a photon is absorbed by the target atom and an atomic electron
is excited to an empty orbital, bound or free, leaving a vacancy in the active sub-shell.
Subsequently, the atom relaxes to its ground state by a sequence of radiative and non-radiative
transitions.

Theoretical calculations using the independent-electron approximation (see [9] and references
therein) give the partial cross-sections σph(Si, E) for the electron sub-shells of the atom. The
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atomic cross-section is the sum of contributions of the various sub-shells,

σph(E) =
∑
i

σph(Si, E). (8)

Most databases give cross-sections for ionisation only, that is, they exclude excitations to bound
levels which are very sensitive to aggregation effects. Because photoabsorption is then forbidden
for sub-shells with binding energy Ui higher than E, the total cross-section presents abrupt
absorption edges. A peculiar feature of the photoeffect is that absorption occurs preferentially
in the innermost sub-shell, i.e., in the sub-shell with the highest binding energy Ui that is less
than E.

Extensive tables of atomic photoelectric cross-sections are given in the Evaluated Photon
Data Library (EPDL) [11], which contain partial sub-shell cross-sections and total atomic cross-
sections for all the elements from hydrogen (Z = 1) to lawrencium (Z = 103) and photon energies
E from 10 eV to 100 GeV. For energies from the absorption edge up to 1 MeV, the tabulated
cross-sections were computed with the DHFS atomic model using a computer programme of
Scofield [12]. For energies higher than 1 MeV, the calculated sub-shell cross-sections were
rescaled to match the total cross-sections of Hubbell et al. [13]. The xcom programme [14]
gives total atomic cross-sections for photon energies between 1 keV and 100 GeV, which are
essentially the same as in the EPDL. Tables of total atomic cross-sections, generated from
a compilation of experimental data and theoretical calculations, were published by Henke et
al. [15] for the elements Z = 1 − 92 and for photon energies from 50 eV to 30 keV. Recently,
Sabbatucci and Salvat [9] reformulated the theory of the atomic photoeffect to allow the easy
calculation of photoelectron angular distributions. They used the DHFS model to generate a
complete database, which includes total atomic cross-sections for all elements (Z = 1–100) and
partial cross-sections for the K-shell and for the L-, M-, and N-sub-shells with binding energies
higher than about 50 eV. This database is used in the MC code penelope.

As noted above, atomic calculations do not account for aggregation effects. Photoelectric
cross-sections for atoms in molecules and solids differ from the free-atom cross-section mostly
because photoelectrons interact with neighbour atoms producing the so-called X-ray absorption
fine structure (XAFS), a series of near-edge resonances together with an oscillatory component
that decreases with the kinetic energy of electrons and extends up to a few-hundred eV above
the edge energy [16]. For photons of small and moderate energies, and for materials with known
optical dielectric functions, the photoabsortion cross-section can be obtained from the dielectric
function as

σph(E) =
2ω

N c κ(ω), (9)

where ω = E/� is the angular frequency of photons with energy E. For energies E higher than
about 100 eV, n(ω) � 1, κ(ω)� 1, and

σph(E) � ω

N c Im[ε(ω)]. (10)

This relation shows that calculated atomic photoelectric cross-sections can be used to define the
dielectric function for frequencies higher than those attainable in measurements.

• Compton scattering

In Compton scattering the incident photon is absorbed by an atomic electron, which is promoted
to an empty orbital (bound or free), and a secondary photon is emitted with energy E′ < E in
a direction forming an angle θ with that of the incident photon. Energy conservation implies
that electrons in a sub-shell Si can be excited only if E − E′ − Ui is larger than the energy of
the lowest empty level.
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The DCS for Compton scattering of unpolarised photons by free electrons at rest is given by
the Klein-Nishina formula (see, e.g., [17])

dσ(KN)

dΩ
= r2e

1

2

E′2

E2

(
E

E′
+
E′

E
− sin2 θ

)
. (11)

Because of energy-momentum conservation, the energy E′ of the scattered photon depends only
on the polar scattering angle θ, and is given by

E′ =
E

1 + (E/mec2)(1− cos θ)
≡ EC. (12)

The Klein–Nishina DCS provides an acceptable description of Compton scattering for those
interactions where the energy transfer is much larger than the binding energy of the active
electron.

A more realistic description is obtained from the impulse approximation [18], which assumes
that the electrons in the active shell Si react essentially as if they were moving with a distribution
of velocities represented by the so-called Compton profile, a quantity defined as an integral of
the Fourier transform of the atomic orbitals. The motion of the atomic electrons implies that the
frequency of the incident photon is Doppler shifted when observed from a Lorentz frame moving
with the same velocity as the target electron. The effect of binding is to prevent transitions that
would lead the active electron to final bound orbitals. Note that interactions where the final state
of the electron is an unoccupied bound orbital are also possible. These interactions correspond
to Raman scattering (see, e.g., [19]), a process that involves relatively small energy transfers and
is usually disregarded in MC codes. The impulse approximation correctly predicts that photons
scattered in directions forming an angle θ with the direction of incidence have a continuous
energy distribution, with a maximum near the Compton energy EC, eq. (12). The DCS for
Compton scattering by electrons in the active shell Si obtained from the impulse approximation
is given by a complicated expression, that depends on the energy transfer W = E −E′ and the
direction of the scattered photon. Adding the contributions from the various electron sub-shells
and integrating over the energy of the scattered photon, the atomic DCS can be expressed as

dσCo(Z,E)

dΩ
=

dσ(KN)

dΩ
Sinc(Z; q), (13)

where Sinc(Z; q) is the incoherent-scattering function, which depends on the momentum transfer

q ∼ 1

c

√
E2 + E2

C − 2EEC cos θ. (14)

The total atomic cross-section for Compton scattering is

σCo(Z,E) =

∫
dσCo(Z,E)

dΩ
dΩ = 2π

∫ 1

−1
dσCo(Z,E)

dΩ
d(cos θ). (15)

The DCSs for Compton scattering adopted in penelope are based on the impulse
approximation, with an analytical approximation to the subshell Compton profiles. To account,
at least partially, for aggregation effects the Compton profile of valence and conduction electrons
may be replaced by that of an electron gas with the same density (number of electrons per unit
volume) as in the material.
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• Rayleigh scattering

Rayleigh scattering is the process in which the incident photon is absorbed by the target atom
and a secondary photon is emitted without excitation of the target atom. Since the recoil energy
of the target is very small, the secondary photon has approximately the same energy E as the
projectile.

The atomic DCS for Rayleigh scattering of unpolarised photons is given by

dσRa

dΩ
= r2e

1 + cos2 θ

2

∣∣∣F (Z, q) + f ′ + if ′′
∣∣∣2 , (16)

where

F (Z, q) =

∫
ρ(r) exp(iq·r/�) dr =

4π

q

∫ ∞

0
ρ(r) sin(qr/�) r dr. (17)

is the atomic form factor, i.e., the Fourier transform of the atomic electron density ρ(r). Tables of
atomic form factors have been published by Hubbell et al. [20] and are included in the EPDL [11].

The quantity f ′+if ′′, the so-called anomalous-scattering factor, accounts for the fast variation
of the Rayleigh cross-section for photon energies around absorption edges. The tables of Henke
et al. [15] include anomalous scattering factors for the elements Z = 1–92 and photon energies
between 50 eV and 30 keV. An extensive tabulation of anomalous scattering factors, covering
all the elements from hydrogen to fermium (Z = 1 to 100) and energies from 1 eV to 10 MeV
has been prepared by Cullen et al. [21].

• Mass attenuation coefficients

The primary quantity for simulating photon histories is the (linear) attenuation coefficient, the
reciprocal of the mean free path. It is given by

μ = NσT, (18)

where N is the number of atoms (or molecules) per unit volume and σT = σph + σCo + σRa

is the total interaction cross-section of an atom (or molecule). Assuming that the additivity
approximation is applicable, the dependence of μ on the density of the material is practically
removed by considering the mass attenuation coefficient,

μ/	 = (NA/Aw)σT. (19)

To give an indication of the relative importance of the different interaction processes, fig. 2 shows
total and partial mass attenuation coefficients of photons in aluminium and iodine as functions
of the photon energy.

2.2. Electron interactions

• Elastic collisions

By definition, elastic collisions are interactions of the projectile electron that leave the initial
state of the target atom unaltered. In an elastic collision the trajectory of the incident electron
is deflected, with a very small energy transfer (of the order of a few meV) to the target atom,
which recoils after the interaction.

Most MC codes describe elastic collisions by means of DCSs calculated by the relativistic
(Dirac) partial-wave expansion method, with a central potential V (r) that represents the
electrostatic interaction energy between the projectile and the charge distribution of the target
atom, which is assumed to remain “frozen” during the interaction (static-field approximation),
plus a generally small correction to account for electron exchange effects. The programme



8

1234567890‘’“”

EMAS 2017 / IUMAS-7 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 304 (2018) 012014 doi:10.1088/1757-899X/304/1/012014

10

2

10

3

10

4

10

5

10

6

E (eV)

10

−3

10

−2

0.1

 

1

 

10

 

10

2

10

3

10

4

10

5

μ
/
ρ
 
(
c
m

2

/
g
)

coherent

incoherent

photoelectric

total

Al

10

2

10

3

10

4

10

5

10

6

E (eV)

10

−3

10

−2

0.1

 

1

 

10

 

10

2

10

3

10

4

10

5

μ
/
ρ
 
(
c
m

2

/
g
)

coherent

incoherent

photoelectric

total

I

Figure 2. Partial and total mass attenuation coefficients of aluminium metal and iodine as
functions of the photon energy. Notice the different low-E behaviour of μCo/ρ for insulators
(iodine) and conductors (aluminium).

elsepa of Salvat et al. [22], performs these calculations for electrons and positrons with kinetic
energies up to ∼ 100 MeV.

The ICRU Report 77 [23] gives a review of theoretical calculation methods and experimental
measurements of elastic scattering of electrons and positrons. This report includes an extensive
database of DCSs for elastic scattering of projectiles with kinetic energies from 50 eV to 100 MeV
by atoms of the elements Z = 1 to 103, which was generated by running elsepa. It is worth
mentioning that DCSs calculated from the partial-wave expansion method are systematically
larger than the measured DCSs (see, e.g., [24]) because of inelastic absorption effects (electrons
that undergo inelastic interactions are effectively removed from the elastic channel) and also
because of radiative corrections [25]. Inelastic absorption reduces the DCS by up to 10 percent
in extreme cases. In principle, this correction is accounted for in MC simulations that include
a detailed description of inelastic collisions. The static-field approximation fails for low-energy
projectiles and small scattering angles, because the electric field of the projectile polarises the
charges of the target atom, and the induced dipole acts back on the projectile. This polarisation
correction can be described by including an extra term in the interaction potential, but it is
usually disregarded in MC simulations on the grounds that small scattering angles do not have
much influence on the whole transport process.

In old MC codes it was usual to describe elastic collisions by using the DCS obtained from
the Born approximation, which is given by

dσel
dΩ

=
1− β2 sin2(θ/2)

1− β2
(
2mez0e

2

q2

)2 [
Z − F (Z, q)]2 (20)
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where F (Z, q) is the atomic form factor, eq. (17), and

q = 2p sin(θ/2) (21)

is the momentum transfer.

• Inelastic collisions

The theoretical description of inelastic collisions of electrons, and other charged particles, is
intrinsically difficult, because of the strong correlations between the energy loss W and the
scattering angle θ. The basic theory of the process is based on the first-order plane wave Born
approximation (PWBA) in which the effective interaction between the projectile and the target
atom is treated as a perturbation to first order, with the initial and final states of the projectile
represented as plane waves. The physics of the process is shown more explicitly when the DCS
is expressed in terms of the energy loss W and the recoil energy Q defined by (see [26])

Q(Q+ 2mec
2) = (cq)2 = c2

(
p2 + p′2 − 2pp′ cos θ

)
(22)

where q = p − p′ is the momentum transfer (p′ is the momentum of the projectile after the
collision). Note that Q equals the relativistic kinetic energy of an electron with momentum equal
to the momentum transfer. Evidently, when the energy transfer is much larger than the binding
energies Ui of the atomic electrons, these react essentially as if they where free and at rest
and, consequently, the most probable excitations are those with W � Q. A formal derivation
with an independent-electron approximation (see [27]) yields a formula for the DCS which, after
neglecting terms that are small for projectiles with energies � 500 keV, reads

d2σin
dW dQ

=
2πe4

mev2

[
2mec

2

WQ(Q+ 2mec2)

+

(
β2 − W 2

Q(Q+ 2mec2)

)
W 2mec

2

[Q(Q+ 2mec2)−W 2]2

]
df(Q,W )

dW
, (23)

where v is the velocity of the projectile. The last factor, the so-called generalised oscillator
strength (GOS), is defined by an infinite sum of matrix elements of the operator exp(iq ·r/�)
between orbitals describing the initial and final states of the target electron; the atomic GOS
is obtained as the sum of partial GOSs for the various subshells of the target atom. The GOS
is independent of the charge and energy of the projectile and embodies a complete description
of the dynamics of the interaction (within the PWBA). Bote and Salvat [27] have calculated
a complete database of sub-shell GOSs for the elements (Z = 1–99) using DHFS one-electron
orbitals.

It is worth mentioning that the PWBA is formally equivalent to a semi-classical formulation
in terms of the dielectric function ε(k, ω), a function of the wave number k = q/� and
the angular frequency ω = W/�, which describes the response of the material to external
electromagnetic fields. In the limit k → 0, ε(k, ω) reduces to the optical dielectric function,
i.e., ε(ω) = ε(k = 0, ω). The so-called optical-data models combine empirical optical data with
various approximate forms of the dielectric function of the degenerate electron gas to build a
model of ε(k, ω) for finite wave numbers k. The classical theory determines the stopping force
on the projectile from the Maxwell equations. The semi-classical interpretation of the quantities
�k and �ω as, respectively, the momentum transfer and the energy loss, allows extracting an
expression of the DIMFP. This semi-classical DIMFP is essentially equivalent to the result from
the PWBA if one makes the identification

df(Q,W )

dW
≡W

(
1 +

Q

mec2

)
2Z

πΩ2
p

Im

( −1
ε(k, ω)

)
, (24)
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where

Ωp =

√
4πNZ �2e2

me
(25)

is the plasma resonance energy of an electron gas with the average electron density of
the medium. The clear advantage of optical-data models is that, apart from experimental
uncertainties of the adopted optical dielectric function, they describe the actual response of the
medium, including the effects of aggregation.

The energy-loss DCS is
dσin
dW

≡
∫ Q+

Q−

d2σin
dW dQ

dQ, (26)

where Q− and Q+ are the minimum and maximum kinematically allowed recoil energies, which
are given by eq. (22) with cos θ = ±1. The total cross-section is the integral of the energy-loss
DCS over allowed energy transfers. The collision (or electronic) stopping power Scol is defined
as the average energy loss per unit path length due to inelastic collisions, and is given by

Scol = −dE

ds
= N

∫ Wmax

0
W

dσin
dW

dW, (27)

where N is the number of atoms or molecules per unit volume andWmax is the maximum allowed
energy transfer. When the energy E of the projectile is much larger than the binding energies
of the atomic electrons, the stopping power is given by the celebrated Bethe formula,

Scol = N 2πe4

mev2
Z

{
ln

(
E2

I2
γ + 1

2

)
+ γ−2

[
1− (2γ − 1) ln 2 +

1

8
(γ − 1)2

]}
, (28)

where I is the mean excitation energy, defined by

Z ln I =

∫ ∞

0
lnW

df(0,W )

dW
dW. (29)

This quantity has been determined empirically for a large number of materials (see [28] and
references therein) from measurements of the stopping power of heavy charged particles and/or
from experimental optical dielectric functions. Most MC codes make explicit use of these
empirical I values. For materials not included in the ICRU tables [28], I is usually estimated
from the additivity approximation. Figure 3 shows stopping powers of electrons in aluminium,
silver and gold metals generated by the penelope code. Notice that the Bethe formula (28) is
accurate only for energies higher than about 10 keV.

The ionisation of inner atomic shells by electron impact is the main source of X-rays in EPMA.
The PWBA yields accurate ionisation cross-sections for electrons with energy higher than about
30 times the binding energy of the active shell. At lower energies, the distortion of the projectile
wave functions by the electrostatic field of the target atom, and electron exchange effects, become
important. A more elaborate theoretical description of total ionisation cross-sections is obtained
from the relativistic distorted-wave Born approximation (DWBA), which consistently accounts
for these effects (see e.g., [27] and references therein). DWBA calculations yield total cross-
sections in fairly good agreement with measurements for ionisation of K-, L- and M-shells
(see [4]). These calculations involve the expansion of free-state wave functions as partial wave
series and the subsequent evaluation of multiple radial integrals. Since the convergence of partial-
wave series worsens with increasing kinetic energies, DWBA calculations are feasible only for
projectiles with relatively small energies, up to about 30 Ui.
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The NIST Standard Reference Database 164 [29] contains an extensive numerical tabulation
of ionisation cross-sections for K-, L- and M-shells of all the elements from hydrogen (Z = 1)
to einsteinium (Z = 99), for electrons and positrons with kinetic energies from threshold up to
1 GeV, which was calculated by combining the DWBA and the PWBA as described by Bote
and Salvat [27]. Also, analytical formulas for the easy calculation of these cross-sections were
published by Bote et al. [30,31]. These formulas are coded in a simple Fortran programme that
yields cross-sections that agree with those in the numerical database to within about 1 %. The
penelope database also includes ionisation cross-sections for N-shells of heavy elements, which
were calculated using the same methodology as for the K-, L- and M-shells. Total cross-sections
for impact ionisation of the K-, L-, and M-shells of gold are shown in fig. 3.
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Figure 3. Left: Collision stopping powers of aluminium, silver and gold as functions of the
kinetic energy E of the projectile electron. Symbols represent experimental data from different
authors. The dotted curves are the stopping powers obtained from the Bethe formula, eq. (28).
Right: Sub-shell cross-sections and total cross-section for inelastic collisions of electrons in gold,
generated by the penelope code. The dotted curves represent total ionisation cross-sections
for the K-, L- and M-shells from the NIST database [29]. Solid curves represent total stopping
powers and inelastic cross-sections used in penelope.

• Bremsstrahlung emission

Bremsstrahlung emission is caused by the interaction of the projectile electron with the
electrostatic field of the atom or in collisions with atomic electrons. The theory of the process
is reviewed in the book of Haug and Nakel [32].

In MC codes the energy of emitted quanta is sampled from an energy-loss DCS, differential
in only the energy W of the emitted photon, expressed in the form

dσbr
dW

=
Z2

β2
1

W
χ(Z,E, κ). (30)

where χ(Z,E, κ), the so-called scaled DCS, is a function of the atomic number Z, the energy
of the projectile E, and the reduced energy of the photon, κ ≡W/E. For a given element, this
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function is finite and varies smoothly with E and κ. Seltzer and Berger [33, 34] have prepared
extensive tables of bremsstrahlung energy spectra, obtained by combining different theoretical
models, for electrons with kinetic energies E from 1 keV to 10 GeV incident on neutral atoms
of the elements Z = 1− 100.

To complete the simulation of bremsstrahlung emission events, one has to determine the
direction of the emitted photon. The angular distribution of emitted photons in electron-nucleus
bremsstrahlung (the so-called shape function) has been calculated by Kissel et al. [35], using a
partial-wave expansion method, for 144 combinations of atomic number Z, electron energy E,
and reduced photon energy κ. Acosta et al. [36] found that these shape functions can be closely
approximated as Lorentz-boosted dipole distributions, from which the emission angle can be
sampled analytically.

In the case of compounds, with ni atoms of the element Zi per molecule, the molecular DCS
is obtained by means of the additivity approximation,

dσbr
dW

=
∑
i

ni
Z2
i

β2
1

W
χ(Zi, E, κ). (31)

It is worth noticing that the total cross-section for bremsstrahlung emission is infinite, due to the
divergence of the DCS at W = 0. In MC simulation we consider only the emission of photons
with energies higher than a certain cutoff Wc, and the associated total cross-section

σbr(W > Wc) =

∫ E

Wc

dσbr
dW

dW (32)

is finite. The radiative stopping power

Srad = N
∫ E

0
W

dσbr
dW

dW = N
∫ E

0
W

(∑
i

ni
Z2
i

β2
χ(Zi, E, κ)

)
dW, (33)

is finite. Tables of radiative stopping powers, obtained from Seltzer and Berger’s scaled DCSs,
are given in Ref. [28].

2.3. Atomic relaxation
Interactions of photons and electrons that cause the emission of secondary electrons
(photoelectric absorption, Compton scattering of photons, and inelastic collisions of electrons)
leave the target atom ionised and in an excited state. The excited ion then relaxes to its
ground state through a sequence of radiative and non-radiative transitions, in which photons
(fluorescence X-rays) and Auger electrons are emitted, respectively. Atomic relaxation can
be simulated by using information from the LLNL Evaluated Atomic Data Library (EADL)
of Perkins et al. [37], which provides a comprehensive tabulation of transition probabilities
and energies for both radiative and non-radiative transitions for all elements. The transition
probabilities in this library were calculated theoretically by assuming that the relaxing ion has
a single vacancy (an assumption that ceases to hold, e.g., after a non-radiative transition) and
transition energies were approximated by means of the DHFS energy eigenvalues for neutral
atoms. penelope simulates atomic relaxation using transition probabilities and Auger-electron
energies from the EADL. However, the energies of X-rays emitted in radiative transitions are
taken from the compilations of experimental values by Deslattes et al. [38], for K- and L-lines,
and by Bearden [39], for M-lines. In the case of radiative transitions not included in these
compilations (e.g., N-lines), the EADL X-ray energies are adopted.

A common practice in studies of X-ray emission is to consider cross sections for emission
of characteristic X-rays, σxS0,S1, defined so that the product NσxS0,S1 equals the probability of
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emission of an S0-S1 X-ray per unit path length of the projectile. These cross-sections can be
measured by counting the emitted S0-S1 X-rays when projectile electrons of energy E impinge
on a very thin foil of the material. σxS0,S1 can be expressed as a weighted sum of electron-impact
ionisation cross-sections for the sub-shell S0, and for inner sub-shells, with weights determined
by the appropriate partial widths and fluorescence and Coster-Kronig yields. Detailed formulas
for the emission cross-sections of K-, L- and M-lines are given, e.g., by Llovet et al. [4].

3. Approximations in MC simulation
Within a MC code random particle histories are simulated from the initial energy of primary
particles down to a certain cutoff, the absorption energy Eabs, at which the particles are
considered to be effectively absorbed in the material. Secondary particles that are emitted
as a direct result of the interaction, and also in the relaxation of atoms following inner-shell
ionisation (by photoelectric absorption and Compton scattering of photons and by electron
impact) may be stored in memory and tracked subsequently in the same way as the primary
particles.

The simulation of photons can be performed by the usual detailed procedure, where all
interaction events in a photon history are simulated in chronological succession. That is, a photon
of energy E starts from a certain position, r0, determined in accordance to the characteristics
of the radiation source, moving in a direction defined by the unit vector d̂0. The distance s to
the next interaction is determined by random sampling from the exponential distribution

p(s) = μ(E) exp[−sμ(E)], (34)

where μ(E) is the IMFP of the photon. The particle is then moved the distance s along the

ray, i.e., to a position r = r0 + sd̂0, where the next interaction takes place. The type of
the next interaction is sampled according to the total cross-sections of the possible interaction
mechanisms, and the interaction is simulated from the corresponding DCS. In Rayleigh and
Compton scattering, the photon is absorbed by electrons in the medium and a second photon
is emitted with energy E′ (equal or less than E). When E′ > Eabs, the surviving photon is
followed by repeating these steps. Photoabsorption terminates the photon history. Each history
is a sequence of a relatively small number of free flights and interactions, which can be simulated
rapidly.

This simulation scheme can be readily adapted to real situations, with material structures
that may consist of several regions of different compositions separated by mathematical surfaces
(interfaces). Photons are simulated in the current material as described above, and when they
reach an interface, the tracking is discontinued and resumed with the cross-sections of the new
material. That is, to track photons in complex geometries, we only need to determine the
distances at which a ray intersects the interfaces.

In principle, electrons can also be tracked using detailed simulation. However, because the
average energy loss in each collision is of the order of a few tens of eV, the number of interactions
undergone by an electron may be quite large and detailed simulation is inefficient. The code
penelope utilises a more efficient tracking strategy that combines detailed simulation of hard
events (i.e., interactions with scattering angle or energy loss larger than pre-defined cutoffs) and
approximate multiple-scattering methods for describing the accumulated effect of the (usually
many) soft interactions that occur between two consecutive hard events. Other codes may
have recourse to more drastic approximations, which speed up the simulation at the expense of
simplifying the interaction physics. For instance, EPMA codes may use the continuous-slowing-
down approximation (CSDA), which consists in assuming that electrons lose energy continuously,
at the rate prescribed by the stopping power. Although this approximation yields reasonable
results for homogeneous samples, it may introduce considerable distortions for specimens with
inclusions at depths slightly larger than the effective range.
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Individual interaction events should be simulated by random sampling from the associated
DCSs. However, the DCSs for Compton scattering of photons and inelastic collisions of electrons
depend explicitly on the energy transfer W and the scattering angle θ (or the recoil energy
Q). These variables are strongly correlated and, in addition, the DCSs vary rapidly with
the energy of the projectile. Such DCSs are not practicable for MC simulation, not only
because of the large memory required to store the numerical DCS (a three-dimensional table)
but also because random sampling from multivariate distributions is far more complicated,
and slower, than from univariate distributions. A frequent practice is to disregard (or alter
artificially) correlations between variables, normally by sampling the most relevant quantity
from its marginal probability distribution and using approximate probability distributions for
the other variables. Approximations of this kind are employed in virtually all MC codes; they are
harmless in the majority of applications, but they can cause visible distortions of the simulation
results in cases where particles undergo a small number of interactions (e.g., in transmission
through thin foils).

In the MC code penelope inelastic collisions are described by using a simple GOS model
consisting of discrete resonances, which reproduces the adopted total cross-sections for ionisation
of inner sub-shells and the empirical value of the mean excitation energy I. This model
yields very accurate stopping powers at high energies, and the correct number of inner-shell
ionisations per unit path length. It also provides a realistic description of energy-loss fluctuation
in individual collisions. The description of Compton scattering in penelope is based on
approximate analytical forms of the sub-shell Compton profiles, which allow exact random
sampling of W and θ.

4. Concluding remarks
The interaction models considered in this review provide a fairly realistic description of coupled
electron-photon transport, in spite of the fact that they involve quite drastic approximations.
MC simulations based on those and similar models have proved to be practically useful in EPMA
and other applications involving X-rays. Still, users of general-purpose MC codes should be well
aware of the limited accuracy of the method, which results from uncertainties in the adopted
fundamental quantities, from the neglect of possible aggregation effects, and from simplifications
in the description of the sample geometry. These limitations give rise to type B uncertainties
in the results of MC simulations, which add to the (statistical) type A uncertainties typically
quantified by MC codes.
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