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Abstract. A marine riser undergoes oscillatory motion in water due to the vessel motions, 
known as global dynamic response. This to-and-fro motion of the riser will generate an 
equivalent flow that can cause Vortex-Induced Vibrations (VIVs), even in the absence of the 
ocean current. In the present work, full-scale measurement data of a drilling riser operating in 
the Gulf of Mexico are analysed. The VIV occurrences for the riser are identified from the data 
and the possible excitation sources are discussed. The oscillatory flow due to vessel motion is 
compared with the ocean current and its possibility to excite VIV is analysed. The full-scale 
data analysis provides an insight into the vessel motion-induced VIV of marine risers in the 
actual field environment. 

1. Introduction 
When slender marine structures like risers, free spanning pipelines and mooring lines are exposed to a 
current flow, they may experience oscillations or vibrations caused by the shedding of vortices around 
the structure. These are called Vortex Induced Vibrations (VIVs). A cylinder in still water will have 
many natural frequencies (fn), for the different modes of vibrations. When the cylinder is exposed to a 
flow, vortex shedding occurs with a shedding frequency fs. When the shedding frequency approaches 
one of the natural frequencies of the cylinder, there is resonance and the cylinder vibrates with a larger 
amplitude. The frequency of the response is approximately equal to the shedding frequency and the 
natural frequency. This is called as “lock-in”. Once we have a “lock-in”, the cylinder is said to 
experience VIV. 

When a marine riser attached to a vessel moves back and forth in water due to the motion of the 
vessel, an equivalent oscillating current is generated and is experienced by the riser. This equivalent 
current flow can cause VIV similar to that caused by the ocean current. The vessel motion-induced 
VIV is influenced by the Keulegan-Carpenter (KC) number values along the riser. 

The vessel motion-induced VIV was first reported in STRIDE, a Joint Industry Project focused on 
compliant risers [1]. It was further studied by Gonzalez [2], Le Cunff et al. [3] and Rateiro et al. [4]. 
Many investigations based on model tests were later conducted to study the VIV of a free-hanging 
riser under oscillatory motion. Kwon et al. [5] conducted experiments on a riser model under 
oscillatory motion for KC numbers as low as 2.24. Wang et al. [6] did similar a study with an 8 m long 
free-hanging riser subjected to pure vessel motion. The equivalent current velocity, effect of KC 
number and the characteristics of the VIV responses were investigated. The Cross-Flow (CF) VIV was 

http://creativecommons.org/licenses/by/3.0
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observed for a KC number as low as 12. Small KC number cases are important given the fact that they 
can cause considerable fatigue to the riser. 

An empirical method to predict the vessel motion-induced VIV of a riser under small KC numbers 
(KC<40) is proposed by Wang et al. [7]. This model takes into account the KC number distribution 
along the riser, the vessel motion frequency and the Strouhal relationship to predict the VIV response 
frequency. Under small KC numbers, the VIV response is no longer governed by the Strouhal 
relationship using St=0.2, which is valid for the steady current, but by the ratio N between the response 
frequency, fresp and the vessel motion frequency, fim. The values of the integer N for various KC 
regimes are documented by Sumer [8] and are shown in equation (1). It was observed that the value of 
N increases step-wise with the KC number. N is found to increase by 1 with an increase of 8 in KC 
number. 
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If the KC regime and the vessel motion frequency are known, the response frequency can be 
estimated using the value of N corresponding to that KC regime. 

Wu et al. [9] proposed an empirical model for the prediction of heave-induced VIV. This model 
considers several time windows within one motion period. The flow velocities over the length of the 
riser are calculated and a number of velocity snapshots at equal intervals over a period of oscillation 
are obtained. Each velocity snapshot, taken at a particular time instant over the length of the riser, is 
the equivalent flow profile for the VIV analysis. Responses for each flow profile are obtained and the 
average of all these responses is taken to describe the time-varying response of the whole riser. 

Many of the investigations focusing on the vessel motion-induced VIV were based on the scaled 
model tests, performed in controlled laboratory conditions. To the authors’ knowledge, no attempts 
have been made so far to study this phenomenon in an actual field environment. In the present paper, 
the full-scale measurements from a drilling riser are analysed and instances of VIV are identified. The 
possible excitation sources including ocean current and vessel motion are investigated. Furthermore, 
the uncertainties associated with the data analysis are highlighted. 

2. Full-scale measurements of drilling riser 
Full-scale measurements of a drilling riser were taken by British Petroleum during a drilling campaign 
in the Gulf of Mexico between 13th April 2007 and 11th July 2007. The dataset is donated to the VIV 
Data Repository hosted by the Center for Ocean Engineering at MIT, for the purpose of calibration 
and benchmarking of a VIV software [10] and is publicly accessible. The main parameters in the data 
set are the accelerations measured by the accelerometers at various points along the span of the riser. 
The dataset contains the following: 

• Riser configuration, dimensions and riser weight. 
• Tension and mud weight data. 
• Current data at different water depth. 
• Acceleration data at various points along the riser. 

2.1. Riser configuration and instrumentation 
Two wells were drilled during the drilling period. The configuration of the riser during drilling of 
well-1 is illustrated in Figure 1. The instrumentation consists of 13 standalone loggers. One of the 
loggers is located on the drill floor and measures the vessel acceleration. The remaining loggers are 
placed at various locations along the riser. The measurement loggers are named as S01, S02, ..., S13 
with S01 situated on the drill floor. Their locations are indicated by the squares in Figure 1. It can be 
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seen that the majority of the loggers are concentrated towards the lower end of the riser. Such an 
arrangement is to capture all the expected modes with a minimum possible number of loggers. An 
optimum placement of loggers should capture at least the quarter wavelength of the lowest mode 
expected [11]. The logger contains the sensors, batteries, memory card and all the associated 
electronics encased within a cylindrical casing [10]. The loggers are strapped to the structure. 
Typically, motion sensors are made of tri-axial accelerometers and tri-planar angular rate sensors [12], 
but the angular rate sensors are not active in this experiment.  

The top tension applied to the riser is 8408 kN and the average density of mud used during the 
drilling period is 1580 kg/m3. The properties of the riser sections are provided in table 1. The modulus 
of elasticity of the material is 2.07 x 1011 N/m2 and the density is 7850 kg/m3. The eigenmodes of the 
riser are shown in Figure 2.  

 
Figure 1. Configuration of the drilling riser for well-1 [10]. 

2.2. Environment and current data  
The water depth at the location of well-1 is 1728 m and well-2 is 1729 m. The current at the location 
was measured using three ADCPs (Acoustic Doppler Current Profiler), two of which are mounted on 
the vessel. The current is sampled at every 10 minutes [10]. A constant density of 1025 kg/m3 is 
assumed for the sea water. 

2.3. Accelerations and events 
The translational acceleration data are recorded continuously for a duration of 15 minutes at each 2 
hour interval. This limited duration of measurements is adopted in order to distribute a limited battery 
life over the whole drilling period. The sampling frequency is 10 Hz. Each 15-minute-long recording 
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period is termed as an event. There are a total of 1078 events captured during the drilling period, 
spread over 3 operational conditions – (1) drilling of well-1, (2) hang-off and transport and (3) drilling 
of well-2. 

 
Figure 2. Eigenmodes and eigen frequencies for the riser. 

Table 1. Riser sections and properties. 

 

Description L (m) 
Stress 
diamet
er (m) 

Thickn
ess 
(m) 

Hydrody
namic 
diameter 
(m) 

Unit dry 
weight 
(kg/m) 

Unit 
submerged 
weight 
(kg/m) 

Bending 
stiffness 
EI (Nm2) 

Axial 
stiffness 
EA (N) 

Diverter 4.1 0.5334 0.02 0.5334 3114.72 - 2.27 x 108 6.88 x 109 
16.7 ft pup joints 5.1 0.5334 0.02 0.5334 706.76 614.88 2.27 x 108 6.88 x 109 
Inner barrel 9.2 0.5334 0.02 0.5334 787.95 - 1.79 x 108 5.34 x 109 
Outer barrel 30.4 0.6604 0.04 0.6604 863.10 750.89 7.49 x 108 1.54 x 1010 
Intermediate FJ 2.8 1.1938 0.35 1.1938 1904.01 1656.52 2 x 1010 1.92 x 1011 
Termination joint 17.3 0.5334 0.02 0.5334 735.95 640.28 2.27 x 108 6.88 x 109 
5 ft pup joints 1.5 0.5334 0.02 0.5334 1391.46 1210.49 2.27 x 108 6.88 x 109 
20 ft pup joints 6.1 0.5334 0.02 0.5334 740.75 644.46 2.27 x 108 6.88 x 109 
40 ft pup joints 12.2 0.5334 0.02 0.8636 614.44 534.56 2.27 x 108 6.88 x 109 
3000 ft buoyancy 
joints 548.6 0.5334 0.02 1.2827 861.72 17.62 2.27 x 108 6.88 x 109 

4000 ft buoyancy 
joints 228.6 0.5334 0.02 1.3081 904.98 27.54 2.27 x 108 6.88 x 109 

5000 ft buoyancy 
joints 274.3 0.5334 0.02 1.3335 957.82 15.04 2.27 x 108 6.88 x 109 

Slick joints 594.5 0.5334 0.02 0.8636 586.74 510.47 2.27 x 108 6.88 x 109 
Lower FJ 2.7 1.4732 0.49 1.4732 2485.25 933.04 4.73 x 1010 3.13 x 1011 
LMRP 3.4 5.6515 2.58 5.6515 29495.64 25661.20 1.04 x 1013 5.15 x 1012 
BOP 7.2 5.6515 0.02 5.6515 26597.42 23139.76 1.04 x 1013 5.15 x 1012 
Wellhead 4.4 0.9652 0.06 0.9652 1854.08 1613.09 3.49 x 109 3.37 x 1010 
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3. Identification of VIV from the data 
The VIV and the corresponding response frequency can be identified by performing a spectral analysis 
of the accelerations or displacements at each logger location. Figure 3 shows the acceleration spectrum 
at a particular logger. The responses seen on the spectrum can also be due to sources other than VIV 
such as drill string rotation or wave-induced motion [13]. VIV occurs in a narrow range of low 
frequencies. Higher frequency vibrations caused by drill string rotation can be identified based on the 
rotation speeds and can be discarded by passing the signal through a low-pass filter. 

 
Figure 3. Acceleration spectrum in X direction at a 
logger showing VIV and other high frequency 
vibrations (Event dated 17/04/2007 1800 hrs). 

 
Figure 4. Acceleration spectrum in X 
direction at a logger showing peaks in the VIV 
range (Event dated 17/04/2007 1800 hrs). 

Figure 4 shows the acceleration spectrum at low frequencies. The VIV response can be found by 
correlating the spectral peaks in the VIV range across all the loggers on the riser. The vessel motion 
occurs at very low frequencies and can be easily identified from a displacement spectrum. The 
displacement spectrum gives a very large peak for the vessel motion frequency at all the loggers. This 
can be correlated with logger S01 which measures the vessel acceleration and hence vessel motion 
frequency can be singled out. 

In this section, a representative event from the full-scale data, measured on 17/04/2007 at 1800 hrs, 
is analysed. This corresponds to the riser configuration for the drilling of well-1. The acceleration 
signals are passed through a low-pass filter to filter-in signals in the VIV range and lower frequencies 
(< 0.5 Hz). 

Figure 5 represents the spectra of accelerations in X direction across all the 13 loggers. Figure 6 
represents those in the Y direction. In both directions, it can be seen that all the loggers except S01 
(S01 measures vessel acceleration) have a peak response at a frequency of 0.0866 Hz. This is 
identified to be the response frequency of the VIV. S01 has a peak at a lower frequency which 
corresponds to the frequency of the vessel motion. Figure 7 shows the displacement amplitude 
spectrum of logger S01 which is attached to the vessel. Since it measures purely the motion of the 
vessel and not the VIV, the peak of the spectrum should provide us with the frequency of the vessel 
motion. In this way, the frequency of the vessel motion can be identified. From the figure, we can see 
that the vessel motion frequency is 0.0033 Hz, which is reasonable for a MODU’s slow varying 
motion due to the second order differential frequency wave loads. 
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Figure 5. Spectra of acceleration in X direction 
across all loggers. 

 
Figure 6. Spectra of acceleration in Y 
direction across all loggers. 

 

 
Figure 7. Displacement spectrum in X direction of logger S01. 

 The source of excitation of the VIV can be either the ocean current or the oscillatory flow due to 
the vessel motion. From the data, the ocean current details for this case are available up to a depth of 
800 m. The direction of the current is at 136-196° w.r.t vessel bow. 

3.1. Comparison of current profiles 

3.1.1. Equivalent current profile: In order to describe the vessel motion-induced VIV, it is necessary 
to define the equivalent current that causes it. Equivalent current profile is the one that the riser “sees” 
due to its relative motion in the water. Since the vessel motions are oscillatory in nature, the 
movement of the riser results in time-varying velocity series at each point along its span. The 
representative maximum of the velocity at each point can be used to create a current profile. 

In case of irregular vessel motions, Wang et al. [14] have proposed a method to generate the 
equivalent current profile in which the standard deviation of the velocity time series at each point 
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along the length of the riser is multiplied by √2 to get the representative maximum. Hence the time-
varying velocity can be simplified into an equivalent current profile according to equation (2). 

     ( ) ( )zzV ve σ×= 2     (2) 

where Ve (z) is the equivalent current profile and σV (z) is the standard deviation of the time-varying 
velocity series at each point along the length. 

Following steps are used to formulate the equivalent current profile in this case: 
• The acceleration data is passed through a low-pass filter to filter-in the low frequencies (<0.04 

Hz) which are associated with the vessel motion. 
• The velocities in X and Y directions at each logger are derived by the integration of 

accelerations in X and Y respectively. 
• The derived velocities are detrended after the integration to keep the dynamic part. 
• The resultant of the velocities in X and Y is obtained. The standard deviation of the resultant 

velocity time series is found out at each logger and used in equation (2) to obtain the 
equivalent current profile. 

It should be mentioned that the vessel and the riser are moving/vibrating in both X and Y 
directions. It is also hard to figure out the correlation among different sensors, partly because of the 
misalignment of the sensors. Therefore, the resultant of the velocities from both directions are taken 
when estimating the equivalent current profile, which should be on the conservative side which helps 
to negate any errors in the data due to the possible logger misalignments. 

In Figure 8, the obtained equivalent current profile due to the motion of the vessel is compared with 
the ocean current. It is seen that the ocean current velocities are very low compared with the 
equivalent velocities from the vessel motion. The ocean current has a maximum value of 0.2 m/s, 
whereas the current speeds in the equivalent current profile are much higher owing to the higher 
velocities of the vessel’s lateral motions. At the top of the riser, the velocity is as high as 0.95 m/s. The 
bottom part of the riser experiences a higher velocity due to the high accelerations. 

Figure 9 shows the resultant KC number distribution for the drilling riser in this case. KC number 
is defined as follows: 

     ( ) ( )
D

zAzKC nπ2
=     (3) 

 where ( )zAn is the resultant displacement of the riser at a node and D is the diameter of the 
riser. The displacements are obtained by integrating the velocities. It is seen that the KC numbers are 
high for this case owing to the high amplitudes of vessel drifts. 
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Figure 8. Generated equivalent current 
profile and the ocean current profile. 

 
 
Figure 9. Resultant KC number distribution along the 
riser. 

3.2.  Numerical analysis 
Both the current profiles are used as input in VIVANA to predict the VIV response frequency. Since 
the ocean current data is not available below a depth of 800 m, the profile is extrapolated to zero 
velocity at the bottom. A constant Strouhal number of 0.2 is used in the analysis. Figure 10 shows the 
comparison of the excitation frequencies along the riser due to the ocean current and the equivalent 
current due to vessel motion. This, in turn, is compared with the averaged spectrum of acceleration in 
X direction from all the loggers. It can be seen that the response frequency due to ocean current lies in 
a low range of 0-0.04 Hz, whereas that due to the equivalent current lie in a range of 0.06-0.11 Hz. 
The latter frequency range is closer to the peak of the observed acceleration spectrum. This is an 
indication that the equivalent current could excite the VIV. Although not dominant, a smaller peak is 
also visible at around 0.04 Hz in the spectrum. 

 
Figure 10. Comparison of excitation frequencies from VIVANA analysis with averaged 

acceleration spectrum in X direction. 
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3.3. Major uncertainties in the analysis 
The complexity of the measurements and lack of information makes it difficult to interpret the data 
and ascertain whether the observed VIV is due to ocean current or vessel motion. Some of the 
uncertainties associated with the full-scale measurements and analysis are presented in this section. 

A major uncertainty here is in the identification of the vessel motion frequency. The frequency 
resolution of the measurements is 0.001 Hz. Due to lack of vessel data or mooring details, it was 
difficult to ascertain the reasonableness of the obtained vessel motion frequencies. Also, the fact that 
the duration of measurements is only 15 mins adds to uncertainty in the obtained results. Prior works 
by Tognarelli et al. [13] and Thethi et al. [12] based on riser monitoring data were focused only on 
finding the response in the VIV frequency range. Typically, the accelerometers are not accurate at low 
frequencies, but the vessel displacements obtained by integration is within the range of typical vessel 
drifts. 

The response obtained from the measurements is at a frequency of 0.0866 Hz. This falls in the 
typical wave frequency range. Information regarding the waves is not available and hence it was not 
possible to determine the effect of waves on the vessel and the riser. 

The alignment of the axes of the loggers with the global axes is not guaranteed and hence there is 
uncertainty in the data. Also, it could be possible that the measurements are contaminated by gravity 
due to the bending motion of the riser. 

The ocean current velocities are available only up to a depth of 800 m and had to be interpolated to 
zero at the bottom. The effect of ocean current on the vessel motion-induced VIV has not been 
considered here owing to the large difference in speeds between it and the equivalent current. A 
relative speed is only negligibly more/less than the speed of the equivalent current, especially at 
greater depths. For other cases when the equivalent current and the ocean current are closer in 
amplitude, it is hard to draw the same conclusion. More controlled model test should be designed and 
performed in order to find the effect of the ocean current on vessel motion-induced VIV, especially 
when the vessel motion is irregular and three-dimensional as have been observed from the full-scale 
measurement 

4. Conclusion and scope of future work 
Full-scale measurement data from a drilling riser was analysed in this study. VIV was identified from 
the data. The ocean current and the equivalent current caused by the vessel motion were used to 
predict the VIV. The equivalent current was found to excite VIV with a response frequency closer to 
the observations than the ocean current, which points out to the possibility of occurrence of vessel 
motion-induced VIV. The uncertainties associated with the field measurements and analysis makes it 
difficult to ascertain the actual source of excitation. 

There remains scope for future work where model tests could be designed and performed for 
irregular vessel motion cases to obtain a thorough understanding of the phenomenon involved. 
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