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Abstract. The conservative operation method which takes unified current-carrying 
capacity as maximum load current can’t make full use of the overall power 
transmission capacity of the cable. It’s not the optimal operation state for the cable 
cluster. In order to improve the transmission capacity of underground cables in cluster,  
this paper regards the maximum overall load current as the objective function and the 
temperature of any cables lower than maximum permissible temperature as constraint 
condition. The interior point method which is very effective for nonlinear problem is 
put forward to solve the extreme value of the problem and determine the optimal 
operating current of each loop. The results show that the optimal solutions obtained 
with the purposed method is able to increase the total load current about 5%. It greatly 
improves the economic performance of the cable cluster. 

1.  Introduction 
Compared with overhead lines, electric power cables have many advantages. For example, power 
cables have high performance of high reliability, require no floor space, and don’t affect the 
appearance of the city. With the development of urban needs, the application of underground power 
cable in the urban power grid is growing. Ampacity is the important operating parameter of the power 
cable. It depends on the maximum operating temperature of the cable insulation. For cross-linked 
polyethylene (XLPE) insulated cables, the ampacity is corresponding to the steady working current of 
the cable when the temperature of core reaches 90℃. If the capacity is too large, the service life of the 
cable will be shortened and the operation reliability will be reduced. If the capacity is too small, the 
metal material of the cable core can’t be fully utilized, and the cable transmission capacity can’t be 
fully utilized [1]. Therefore, accurate calculation and evaluation of ampacity is the premise of safe and 
efficient operation of cable. Reasonable determination of cable ampacity has important engineering 
significance for short-term expansion and operation design. At present, the methods of determining the 
cable ampacity usually include three methods: analytic calculation, numerical calculation and 
experiment. Analytic calculation usually adopts IEC formula and NM method [2, 3, 4]. Numerical 
calculation includes finite element method, boundary element method, finite difference method, finite 
volume method and so on [5, 6, 7]. The analytical method is simple and convenient in calculation, it is 
suitable for solving relatively simple problems in geometry, such as homogeneous soil with uniform 
thermal conductivity. For complex cases, such as uneven soil heat conduction or backfill soil, 
correction factors are needed to correct the calculation. The numerical method is more suitable for 
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analyzing complex cable system by programming. And it can be used to deal with complicated 
physical conditions. The calculation results are more accurate.  

In actual operation, carrying capacity is an important reference for the cable group. When the load 
current of any loop in the cable group does not exceed the carrying capacity, the cable group can 
operate safely, but the power transmission capacity of the cable isn’t fully taped. In order to improve 
the utilization rate of the cable and achieve the maximum transmission capacity of existing cable line, 
the interior point method is used to compute the best current distribution of 110 kV single core cable 
group under the circumstance of each core cable temperature not exceeding 90 degrees and uniform 
soil conductivity. 

2.  IEC formula for ampacity of cable group 
According to IEC60287, the ampacity of the cable group can be represented by the formula (1): 
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                                              (1) 

 
Where, iI is the load current of cable “ i ” in A,  i  is the running temperature of cable “ i ” in ℃, c  

is the environmental temperature of cable laying soil in ℃, diW is the dielectric loss per unit length of 
cable insulation of cable “ i ” in watt per meter,  1iT  is the thermal resistance per unit length between 
single cable core and metal sheath in kelvin meter per watt, 2iT  is the thermal resistance per unit length 
of lining which is between armor and metal sheath in kelvin meter per watt, 3iT  is the thermal 
resistance per unit length of outer sheath in kelvin meter per watt, 4iT  is the thermal resistance per unit 
length between single buried cable surface and surrounding media in kelvin meter per watt, iR  is the 
AC resistance per unit of cable core when the temperature  of cable “ i ” reaches i  in m , 1 2i i 、  are 
the ratio of the total metal sheath losses to the total conductor losses and the total armor losses to the 
total conductor losses respectively. 

In the cable group, there is mutual heat influence between different cable circuits when their 
current values are different, which leads to superposition effect of temperature. Therefore, the thermal 
effect of other cables can be equivalent to the ambient temperature rise of the cable “ i ”. The 
relationship between the cable current and temperature can be formed as follows [8]: 
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In formula (2) 
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Where, int  is conductor temperature reduction factor due to the heating from the neighboring 

cables, jI is the current of cable “ j ” in A, djW is the dielectric loss per unit length of cable insulation of 
cable “ j ” in watt per meter, jR is the AC resistance per unit of cable core when the temperature  of 
cable “ j ” reaches j  in m , jn  is the number of conductors loaded in a cable. 1jn   represents single 
core cable and 3jn   represents three core cable. 1 2,j j   are the ratio of the total metal sheath losses to 
the total conductor losses and the total armor losses to the total conductor losses respectively for cable 
“ j ”. ijd  is the center distance between cable “ i ” and cable “ j ” in meter, ijd   is the mirror distance 
between cable “ i ” and cable “ j ” in meter, s  is the thermal resistance coefficient of cable laying soil 
in  kelvin meter per watt. 
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3.  Optimization of ampacity based on interior point method 

3.1.  Optimization Objective and Constraint Function 
In this paper, the maximum transmission current of the cable group is regarded as the objective 
function, and the running temperature of each cable not exceeding 90 degrees is regarded as the 
constraint condition. The variable is the current of the cable and the corresponding running 
temperature. The resulting problem can be expressed as follows: 

Objective function and constraints are giving in (4) and (5) 
 

 
1

max
n

i
i

f x I


                                                              (4) 

 
  90; 1, 2, ,i i n                                                                 (5) 

 
Where, iI  and i  are the current and running temperature of cable “ i ” respectively, n  is the total 

number of cables in the system. 

3.2.  Equivalent Transformation 
By formula (2), it can be seen that with the increase of cable core temperature, the current of cable 
increases, but the relationship between them is not simple linear, and can be further described as: 
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Obviously, the difference value  i c   between the running temperature of the cable “ i ”and the 

ambient temperature should be less than the difference value  90 c between the highest rated 
temperature and the ambient temperature. Then formula (6) can be expressed as: 
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After finishing, the inequality constraints (7) can be reduced to 
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Where, 
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After above transformation, the original problem can be equivalently transformed into the 

following nonlinear programming problem: 
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3.3.  Calculation Procedure of Interior Point Method 
Interior point method has the advantages of fast computation speed, good convergence and strong 
robustness. It can effectively deal with inequality constraints and other advantages. And it is widely 
applied to solve nonlinear programming problems. The essence of it is that the constrained 
programming problem is transformed into an unconstrained programming problem by Lagrange 
method. The KKT formula of the original problem is solved by Newton method and the optimal 
solution is iterated to the optimal solution [9]. 

The maximum value problem is transformed into a minimum value problem. The relaxation 
variable is introduced to transform the inequality constraint into an equality constraint, and the original 
problem can be expressed as: 

 

 
1

min

. . ( ) 0

0

n

i
i

f x I

s t g x l

l



 

 



 

 
Construct a related Lagrange function: 
 

( , , , ) ( ) ( ( ) )T TL x y l y f x y g x l y l     
 
The KKT equations with perturbation factors 0   are derived from the first order optimality 

conditions: 
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Where, l  is relaxation variable, y  and y  Lagrange multipliers, ( , )L Y are all diagonally matrices, and 

[1, ,1]Te   . 
The perturbation method is applied to solve the perturbed KKT equations, and the modified 

equation is obtained: 
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                                                       (10) 

 
In (10), 0 0 0, ,x y lL L L  denote the residuals of the  perturbed KKT equations, 2 ( )f x  and 2 ( )g x are 

Hessian matrices of ( )f x  and g( )x . 
The proposed interior point method algorithm may be summarized as follows: 
Step 0: Initialization; set initial value of an iterative counter 0k  , maximum iterations max 50k  , 

centering parameter (0,1]  , and calculation tolerance 610  . Choose relaxation variable 0l   and dual 
variable 0y  . 

While ( maxk k ) DO: 
Step 1: compute complementary gap T

gapC l y : 

            If gap ( gapC  ), then stop computation and output optimal solution. 

Step 2: compute the perturbed factor gapC

r
   

Step 3: solve the correction equation (10), and obtain the correction of variables 
 

[ , , ]k Tv x y l      
 

Step 4: determine the maximum step size of the original and dual variables 
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Step 5: update the primal and dual variables by 
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Step 6: set 1k k   
END DO   
Step 7: Print “Computation does not converge!” and stop. 

4.  Calculation result analysis 
Take the YJLW03 64/100 kV parallel buried single core XLPE cable which is widely used in 
Shanghai area as an example, an illustration of the sequence corresponding to cable configuration is 
shown in Fig. 1 [10].  
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Figure 1. Map of laying for identical and single core cables. 
 

Soil temperature is 20 ℃, and soil thermal resistance coefficient equals 1. Each loop is vertically 
arranged from top to bottom by A, B and C, and the subscript of the letter indicates the loop number. 
The cross sectional area of the single core XLPE cable is 400 mm2, and the structural parameters are 
shown in Table 1. 

 
Table 1. Parameters of 110kV single core cables 

Structure 
Diameter 

/mm 
Outer diameter 

/mm 
Thickness 

/mm 
Conduction coefficient 

/W·(m·K)-1 
conductor 23.8 — — 400 

inner 
semiconductor 

— — 1.3 1 

insulation layer — — 17.5 1 
outer 

semiconductor 
— — 1.2 0.2 

water barrier layer — — 5.0 1 
aluminum bellows — — 2.0 238 

outer sheath — — 4.0 0.17 
cable — 85.8 — — 

 
The current value and the core temperature optimized by the interior point method, and the 

ampacity and the core temperature of cables calculated by the IEC formula method are shown in Table 
2. 
 

Table 2. Comparison of ampacities and optimal current and cables core temperature of 7 loops 

Loop number
IEC formula method Interior point method 

Cable core temperature /℃
Capacity

Cable core temperature /℃ 
Optimized current

A phase B phase C phase A phase B phase C phase 
1 72.0 76.7 76.2 

281.8A

84.0 90.0 89.0 327.4A 
2 79.0 84.3 83.2 84.0 90.0 88.6 292.1A 
3 82.8 88.4 87.1 84.0 90.0 88.5 276.7A 
4 84.0 90.0 88.4 84.1 90.0 88.5 272.3A 
5 82.8 88.4 87.1 84.0 90.0 88.5 276.7A 
6 79.0 84.3 83.2 84.0 90.0 88.6 292.1A 
7 72.0 76.7 76.2 84.0 90.0 89.0 327.4A 

Total number of cable group/A 5918 6195 
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As shown in Table 2, when the cable groups operate under current capacity, the fourth loop B cable 
located at the center of the cable group has the highest cable temperature, reaching a maximum 
operating temperature of 90 ℃. In the whole cable group, the cable core temperature from high to low 
is B phase, C phase and A phase. The core temperature of each cable in the cable group is symmetrical 
distribution with the fourth loop which is the center, the maximum cable core temperature difference 
between the 7 loops cable groups is 18 ℃. The average temperature of the cable core is 82 ℃. 

When each loop cable operates under the unequal current optimized by the interior point method, 
the B phase of the 7 loops cable all reach the highest running temperature of 90 ℃. The maximum 
temperature difference of the 7 loops cable core is reduced to 6 ℃, and the average temperature of the 
cable core of the 7 loops is increased to 87.5 ℃. The higher the overall average temperature of the 
cable core, the higher the utilization ratio of the cable, and the better the overall transport capacity of 
the cable group. The total current of the whole cable group is increased by 4.68% compared with the 
current carrying capacity when the 7 loops cable operate with the optimized current. In addition, 
comparing the optimal running current of each loop, it is found that the current of the first loop and the 
seventh loop near the outside of the cable group is the largest. The running current of the loop closed 
to the center is smaller than the current of the loop which locate outside of the cable group, this is 
because the loop near the outside has better heat dissipation condition, but the heat dissipation 
condition is poor in the middle of the cable group. 

5.  Conclusion 
In this paper, the interior point method is used to solve the optimal operation of HV cable group. 
Through the calculation of the cable group with equal spacing as an example, the following 
conclusions are obtained: 

1. When the cable group runs under current capacity, the mutual heat effect between cables makes 
the temperature in the middle of the cable group higher and the temperature of edge cable lower. The 
bottleneck effect of the intermediate cable leads to the failure of maximize the transmission capacity 
of the whole cable group. 

2. When the cable group runs under optimized current, the current of the loop near the outside is 
larger because of the good heat dissipation condition. The average temperature of the cable core 
increases to 87.5 ℃, and the overall current delivery capacity of the cable cluster is increased by 
4.68%. 
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