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Abstract. A mechanical impedance model of a coupled motor–shaft–bearing system 

has been developed to predict the dynamic characteristics and partially validated by 
comparing the computing results with finite element method (FEM), including the 

comparison of displacement amplitude in x and z directions at the two ends of the 

flexible coupling, the comparison of normalized vertical reaction force in z direction 
at bearing pedestals. The results demonstrate that the developed model can precisely 

predict the dynamic characteristics and the main advantage of such a method is that it 

can clearly illustrate the vibration property of the motor subsystem, which plays an 
important role in the isolation system design.  

1.  Introduction 

The revolution of the proposition motor in a ship can create severe vibration which not only lowers the 
life cycle of equipment, but also causes radiating noise and further exposes the ship location. Isolation 

system is a good way to reduce the vibration transferred to the ship hull. In the design process of an 

isolation system, important parameters like the displacement difference between the two ends of 
flexible coupling, the forces transferred to the foundation by bearing pedestals are of great interest. In 

this paper, mechanical impedance method (MIM) is introduced to derive the interested parameters. 

The analyzed isolation system is shown in Figure 1, which is composed of a motor, vibration isolators, 
flexible coupling, transmission shaft and bearings. The transmission shaft is sheathed by the rotor of 

motor and connected with the rotor by a flexible coupling. 
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Figure 1. Schematic diagram of motor vibration isolation system 
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2.  Kinematic Analysis of the motor vibration isolation system 

The motor vibration isolation system is split into two: the motor subsystem including the stator, the 

rotor and isolators; the shaft subsystem including the transmission shaft and bearings. The two 

subsystems are connected with each other by the flexible coupling, as shown in Figure 2. In each 

subsystem, the y-axis is along the shaft, the x-y plane is horizontal and the y-z plane is vertical。The 

corner mark m indicates the motor subsystem and s indicates the shaft subsystem。 
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Figure 2. (a) Schematic diagram of motor subsystem.  (b) Schematic diagram of shaft subsystem. 

2.1.  Kinematic Analysis of the motor subsystem 
The motor is isolated by low-frequency air springs, whose flexibility is much larger than the motor’s, 

so the motor can be regarded as rigid body. In that case, the motor subsystem presents 6-degree rigid 

modals. At the same time, the isolators can be treated as linear springs, which is the precondition of 
the subsequent kinematic analysis [1]. The motor weighs 50t, supported by 12 isolators which are π/6 

obliquely placed, as shown in Figure 3. 
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Figure 3.  the layout of isolators  in motor subsystem 

 
The coordinate system is established as shown in Figure 2(a), where the origin is located at the 

centroid of the motor. The motion equation of motor subsystem is given by  

 

 
m m m m m

   M X K X F   (1) 

 

where Mm=diag(m, m, m, Ixx, Iyy, Izz,) is the mass matrix of the motor. m is the mass of the motor. 

When i=j (i, j=x, y, z), Iij is moment of inertia; when i≠j, Iij is cross inertia of the motor, which can be 

regarded as zero because of the symmetry of the motor. [ , ,z , , , ]m m m m m m mx y         X  is the 

displacement vector at motor centroid. m
F  is the load vector at the motor centroid. mK  is the global 

stiffness matrix of isolators, which is assembled by the stiffness of each isolators through coordinate 

transformation. mK  is given by  
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where 
iG  is the position transformation matrix, 

miK is the stiffness matrix of each isolators in 

global coordinate in motor subsystem. 
iG is given by  
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where i

ja (i=1,2…n, j= x, y, z) is the distances between positions of each isolators and x, y, z axis. 

miK  is given by  

 

 T

mi i mi iK T k T   (4) 

 

where ( , , )mi p q rdiag k k kk  is the stiffness matrix of each isolators. p, q, r are the stiffness spindles 

and kp, kq, kr is the linear stiffness of the corresponding isolators in local coordinate system. cosi T θ  

is the direction transformation matrix which converts the stiffness matrix from local coordinate system 

to global coordinate system. θ is the angle matrix between local coordinate axes and corresponding 

global coordinate axes, which is given by  
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where ϕ, φ, ψ are the angles between stiffness spindles p, q, r and x, y, z. 

Under the application of stable harmonic excitation Fmejωt, the equation (1) can be given by  

 

 
m m m
  Z V F   (6) 

 

where 2( )m m m j   Z K M  is the point impedance matrix at the centroid in the motor 

subsystem. The motor subsystem is connected with shaft subsystem by the flange, so the displacement 

and force at the centroid can be converted to the flange. The relationship is given by  
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coordinate of flange in motor subsystem, so the motion equation of flange can be given by  

 
m m mZ V F   (8) 

where T[ ]m f m f
 Z G Z G  is the point impedance matrix at the flange (station 6) in motor subsystem.  

2.2.  Kinematic Analysis of the shaft subsystem 

The shaft subsystem has 6 stations, as shown in Figure 2(b) and a shaft element is shown in Figure 4. 

There are two types of methods to model the shaft element. An Euler-Bernoulli beam model is 
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appropriate for low-speed flexible shafts and a Timoshenko beam model is appropriate for high-speed, 
larger diameter shafts[2]. Allowing for that the rotary speed is less than 200r/min and the ratio 

between shaft length and diameter is larger than 25, the Euler-Bernoulli beam model is adopted to 

analyse the shaft subsystem.  
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Figure 4. Shaft segment n in yz plane 
 

The relationship between the force and velocity vectors of shaft segment n is given by  

 

 s s s

n n nZ V F   (9) 

 

where T[ , , ]s s s s s s s s s

n ix iz ix iz jx jz jx jzF F M ,M ,F ,F ,M ,MF , T[ , , , , , , , ]s s s s s s s s s

n ix iz ix iz jx jz jx jzV V V V   V .
s

nZ  is given 

by[3] 
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. The matrix 

elements a-f are functions of shaft segment, as follows: 
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where 21 cosh cos ,  ,  ,  ,  kL kL J AcK c E K I A k A EI          . A is cross sectional 

area of shaft segment; L is length of shaft segment; E is Young’s modulus; I is second moment of area 

of shaft segment; ω is circular frequency of vibration. 

2.3.  Kinematic Analysis of the fluid film journal bearings 

In fluid film journal bearing, because the dynamic characteristics in orthogonal directions are cross-
coupled, the relationship between the fluid film force and the displacement and velocity of journal is 

very complicated. Generally, under the assumption of linearization, the dynamic characteristics can be 

given by [4] 
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         
  (11) 

 

where ( , )bijk i, j x z is the stiffness coefficient and bijc  is the damping coefficient which is mainly 

attributed to the fluid film. Under the condition of stable vibration, equation (11) becomes  
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bi bi biZ V F   (12) 

 
where 

bi bi bij Z K C  is the impedance matrix of bearing. 

2.4.  Assembly of shaft subsystem impedance matrix  

As shown in Figure 2, there are 5 stations on the shaft. Station 1, 2, 4, 5 are bearings. Station 3 is 
connected with station 6, which is on the motor, through the flexible coupling. The impedance 

matrices of shaft segments are assembled the way same as the manner used in finite element[5] 

through applying the continuity of linear and angular velocities at each shaft station. 

The assembled shaft subsystem impedance matrix s
Z is of order 20×20 (4 dofs×5 stations). In 

equation (12), biZ is of order 2×2, which is added to the {1+4(i-1), 2+4(i-1)}th rows, {1+4(i-1), 2+4(i-

1)}th columns of s
Z , where i=1, 2, 4, 5. It is obtained the complete assembled shaft subsystem 

impedance matrix sZ . 

2.5.  The coupled system impedance matrix  

The coupled impedance matrix is ( , )s mdiag Z Z Z . Then it is needed to consider the influence of 

the flexible coupling. The motion relationship between two ends of the flexible coupling can be 

described as 

 

 3 6 3 6 3 6

3 6 3 6 3 3

x x x x

c

z z z x

F F x x V V

F F z z V V

        
            

        
cK Z   (13) 

 

where 
cK is the stiffness matrix of the flexible coupling. 

c c jZ K , the impedance matrix of 

flexible coupling, is of order 2×2, which is added to {9, 10}th rows, {9, 10}th columns and {21, 23}th 

rows, {21, 23}th columns of Z . At the same time, -
cZ is added to {9, 10}th rows, {9, 10}th columns 

and {21, 23}th rows, {21, 23}th columns of Z . It is obtained the complete coupled impedance matrix 

Z . 

The motion equation of whole system is given by  
 

 ZV F   (14) 

 

Where T T T[ , ]s mF F F , T T T[ , ]s mV V V , in which mF is the exciting forces from the motor. It is 

assumed that the foundation is rigid, so 0s F  and all external exciting comes from the motor.  

3.  Model validation 

A moment of 1000N/m is applied to the flexible coupling (station 6) to simulate the output vibration 

of the motor. The MIM and finite element method (FEM) are used to obtain some important 
parameters in the isolation system design. The Comparison of displacement amplitude in x and z 

directions at station 6 and 3 is presented in Figure 6. It is revealed that the results through two methods 

have good agreement under 150Hz. When above 150Hz, MIM tends to shift the peak of the curve to 
right, which can be attributed to the limitation of Euler-Bernoulli beam model discussed in section 2.2.   
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Figure 5. Comparison of displacement amplitude obtained by FEM and MIM in x and z directions at 
station 6 and 3. (a) Displacement amplitude in x direction at station 6, (b) Displacement amplitude in z 

direction at station 6, (c) Displacement amplitude in x direction at station 3, (d) Displacement 

amplitude in z direction at station 6. 
 

In the spectrum of above 30Hz, there present several resonance peaks, which is the model 

frequency of the shaft subsystem. In the low frequency spectrum, the results of FEM tend to present 
more resonance peaks than MIM. This is because in MIM, the stiffness of isolators is concentrated at 

the center of the motor, so it only presents two or three rigid model. The FEM takes the different 

stiffness of isolators into consideration, so it presents violent fluctuation. The MIM can clearly 
illustrate the important information, so it has advantage in the isolation system design relative to FEM. 

The comparison of normalized vertical reaction force obtained by FEM and MIM in z direction at 

station 1, 2, 4 and 5 is demonstrated in Figure 6. In the design process, we are interested in how much 
the force is transferred to the base by the bearing pedestals, especially where the resonance peaks 

happen and the MIM can offer sufficiently precise prediction. 
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Figure 6. Comparison of normalized vertical reaction force obtained by FEM and MIM in z direction 
at station 1, 2, 4 and 5. (a) Normalized vertical reaction force at station 1, (b) Normalized vertical 

reaction force at station 2, (c) Normalized vertical reaction force at station 4, (d) Normalized vertical 

reaction force at station 5. 
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4.  Conclusion and further development  

In this paper, a mechanical impedance model is developed to predict the dynamic characteristics of the 

isolation system in the design process for a coupled motor–shaft–bearing system and partially 

validated by comparing the computing results with finite element method. The main advantage of such 
a method is that it can clearly illustrate the vibration property of the motor subsystem, which plays an 

important role in the isolation system design. At the same time, the MIM can precisely predict the 

shaft subsystem model frequencies. 
 The foundation in this paper is assumed to be rigid. In the later research, the motor-shaft-bearing 

will be put on a huge raft which is supported by a number of isolators and forms an integrated 

isolation system. Further development of MIM on the base of the derivation in this paper and some 
experimental validation will be reported in the near future. 
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