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Abstract. In this paper, steady state vibrations of systems with built-up viscoelastic dampers 
are considered. The dampers are modeled using the fractional-derivative rheological models. 
The Caputo type fractional derivative definition is used. In particular, the steady state 
vibrations of systems are analysed. The solution to the steady state vibrations is written using 
real quantities. The effects induced by changes of environmental temperature are also 
considered and, in this context, the time-temperature superposition principle is adopted. The 
results of several parametric studies are also described and discussed in detail. 

11.  Introduction 
Modern structures are higher, lighter and more flexible, constructed with the use of materials of higher 
strength, and optimally designed. However, these systems are more susceptible to dynamic loading 
and, in consequence, the amplitudes of vibration of such systems are sometimes too large; this can 
make it impossible to correctly utilize the structure or, in some cases, it can destroy the structures. In 
such cases, the structure’s vibrations must be reduced. Many damper types are successfully developed 
to obtain a significant reduction of amplitudes of excessive vibration [1]. Viscoelastic (VE) dampers 
are a very promising class of dampers, to name just one. To describe the dynamic behavior of such 
dampers, a number of rheological models, characterized by the fractional derivative, can be used.  

Steady state vibrations of a vibrating system with one degree of freedom and damping described by 
fractional derivatives were examined in paper [2]. Steady state vibrations caused by deterministic, 
harmonically changing forces were considered. In paper [3], the steady state vibrations of a linear and 
a non-linear system with one degree of freedom are analyzed. The damping of a system is described 
by means of a fractional derivative. In paper [4], non-linear steady state vibration of arches made by 
viscoelastic material are analyzed. The authors are using the residue harmonic homotopy method. 
Paper [5] is concerned with the steady state vibrations of a two-member plane truss system. 
Viscoelastic properties are described by the fractional Kelvin-Voigt model. The effects of fractional 
order and material modulus ratio on the system’s responses are studied. An analysis of steady state 
vibrations of beams and frames with dampers, characterized by the fractional derivative, is conducted 
in paper [6]. 

In the present paper, steady state vibrations of systems with and without VE dampers are analyzed. 
To describe the dynamic behavior of dampers, the rheological model shown in Figure 1 is used. The 
equations describing the model’s behavior contain the fractional derivatives. The model presented in 
Figure 1 is general because it contains a number of simpler models (both classic and fractional) as 
special cases, which are often used in the dynamic analysis of systems with the dampers (see [1, 6, 7]).  

http://creativecommons.org/licenses/by/3.0
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Figure 1. Diagram of rheological model of dampers. 

22.  Description of viscoelastic dampers 

2.1.  Description of spring-pot element 
Different types of rheological models are used for describing the vibrations of dampers. Such models 
consist of viscous, elastic and spring-pot elements, connected in different ways. The most often used 
models are the viscous, Kelvin and Maxwell models. A combination of them provides more complex 
models which enable a more precise description of dampers. In models with a number of elements, the 
number of parameters significantly increases. This results in much more complex equations of motion. 
To eliminate these disadvantages, the fractional models of dampers are used to describe them. This 
enables a reduction of the number of damper parameters [7]. When fractional models are used, a 
precise description of damper’s behavior with fewer parameters and wider frequency of excitation 
range is possible. Such models were proposed by Bagley and Torvik in [8]; they were used to describe 
the dynamic behavior of frames with dampers and sandwich beams, for example, in [9,10].  

In this paper, the Caputo’s definition of fractional derivative is used: 

t
tt

ttq
tq

t

t d
)(

d/)(d

)1(
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)(D

0
� −−Γ

= α
α

α
 , (1) 

where )(⋅Γ  is a gamma function, 10 << α  is an order of fractional derivative. Moreover, it is 
assumed that the lower limit of the integral in definition (1) was moved to ∞− . 

This derivative is used to describe the behavior of the spring-pot element as proposed by Scott-Blair 
in paper [11]. In Figure 1, the elements are shown as the diamonds. The behavior of the spring-pot 
element is characterized by Eqn (2): 

)(D )( tqctu t Δ= α (2) 

where )(tu is force in the element, )(tqΔ  is the difference of displacements of the element’s ends, and 

c  is the constant of the model. The coefficient c  has an anomalous dimension ]/Ns[ mα . The Scott-
Blair element is one of which the properties are intermediate between those of elastic and viscous 
elements. For 0=α , the element behaves like a spring and for 1=α  it does like a viscous damper. 

2.2.  Steady state solution for dampers 
Let us consider a fractional model of the damper shown in Figure 1. It is a general model, consisting 
of fractional Kelvin and Maxwell elements joined in parallel. In special cases, the model can turn into 
one of many simpler models of great practical importance, e.g., Scott-Blair, Kelvin, Maxwell or Zener 
model, in either fractional or classical versions (when 1=α ). The force in the analyzed model is a 
sum of forces in both constituent elements: 

                                                       )()()( 10 tututu += , (3) 

where index 0 denotes force in the Kelvin element, and index 1 is force in the Maxwell element. 
The behavior of both elements is described by the following equations: 

))(D1()( 000 jkt qqktu −+= αατ ,         )(D)(D)( 11111 jktt qqktutu −=+ αααα ττ  , (4) 
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where 000 / kc=ατ , 111 / kc=ατ , symbols 0k  and 1k  denote the stiffness of the Kelvin and Maxwell 

elements, respectively, whereas jq and kq  denote displacements of the ends of the damper’s model. 

If the damper vibrations are steady state vibrations, the following relationships are valid: 

tututu sc λλ sincos)( +=  ,  tututu sc λλ sincos)( 000 +=  ,       (5) 

tututu sc λλ sincos)( 111 +=  ,                      tqtqtq isici λλ sincos)( +=  . (6) 

Taking into account that 

)2/cos(cosD απλλλ αα += ttt  ,  )2/sin(sinD απλλλ αα += ttt  , (7) 

and, after substituting relationships (6) into Eqns (3) and (4), the following is obtained: 

     )]()([)( 2100 jsksjckcc qqqqktu −+−= χχ  ,   )]()([)( 1200 jsksjckcs qqqqktu −+−−= χχ  , (8) 

     )()()( 21111 jsksjckcc qqkqqktu −Θ+−Θ=  ,  )()()( 11211 jsksjckcc qqkqqktu −Θ+−Θ−=  , (9) 

where symbols 1χ , 2χ , 1Θ  and 2Θ  are defined as: 
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After substituting relationships (8) and (9) into Eqn (3), the following is obtained: 

   ))(())(( 21201110 jsksjckcc qqkkqqkku −Θ++−Θ+= χχ  ,     (12) 

                               ))(())(( 11102120 jsksjckcs qqkkqqkku −Θ++−Θ+−= χχ  . (13)

2.3.  Influence of temperature on damper’s parameters 
In order to determine the VE damper’s response to changes of temperature, the time-temperature 
superposition principle can be used, as given by the following relationship:

     ),~(),( 00 TtKTtK Tα= ,    (14) 

where K  is called the complex modulus, 0t and 0T  are the reference time and reference temperature, 

respectively. The symbol Tα~  denotes the so-called shift factor. The time-temperature superposition 
principle can be applied to the frequency domain and is sometimes named as the frequency-
temperature correspondence principle [12]:

     ),~(),( 00 TKTK T λαλ = ,       (15) 

where 0λ  is the reference frequency. In this paper only the horizontal shift factor is taken into account 

as the existing literature implies that for viscoelastic materials used in dampers the vertical shift factor 
seems to be equal to one (see [12]). However, this point needs deeper theoretical and experimental 
study. 

The shift factor is calculated from some empirical formula. The following William-Landel-Ferry 
formula is often used:

     )/(~log 21 TCTCT Δ+Δ−=α ,      (16) 

where 1C  and 2C are constants and 0TTT −=Δ . Another formulae can also be used if they are more 
appropriate.
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It is well known (see [7]) that the steady state vibration of dampers can be described using the 
complex modulus. The solution is in the following form: 

                                                 )))((i)(()( jk qqKKu −′′+′= λλλ  ,       (17)

where )(' λK  is the storage modulus, )(" λK  is the loss modulus and here 1i −=  .  
The storage and loss moduli can be written as follows (see [7]):  

           [ ] [ ]
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Assuming that parameters 0k , 1k , 0τ  and 1τ  are related to the reference temperature 0T  and the 

reference frequency 0λ , Eqn (17) takes the form:  
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When temperature is different from the reference value, the storage modulus can be described by:  

                [ ] [ ]
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Taking into account the frequency-temperature correspondence principle, as expressed by Eqn (14), 
the above formula can be rewritten as follows:  

    [ ] [ ]
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A comparison of Eqns (22) and (20) leads to the following results: 

         00
~

kk =  ,   11
~

kk =   , 00
~~ τατ T=  , 11

~~ τατ T=     (23) 

From Eqn (23), it can be established that only the parameters 0c  and 1c  of the damper model will 

change with changes of temperature according to the relationship:  

   00
~ cc Tα=  ,  11

~ cTc α=  ,      (24) 

where ααα TT
~=  is the reduced shift factor. 

3.  Steady state vibration of systems with dampers 
The motion of the system with dampers is described by the following equation [7]: 

                                      )()()()()( ttttt kkk FPqKqCqM +=++ ���   (25) 

In Eqn (25), the symbols )(tP and )(tF  denote the vector of excitation forces and the vector of 

interacting dampers’ forces, respectively, kkk KCM ,,  means the matrix of mass, damping and 
stiffness, respectively. The vector of displacement of the system is denoted by )(tq . 

When the harmonic load described by Eqn (26) is applied: 

                                           ttt sc λλ sincos)( PPP +=  , (26) 

the dampers’ interacting forces and steady state vibrations of the system can be described by the 
following equations:  

          ttt sc λλ sincos)( FFF +=  , ttt sc λλ sincos)( qqq +=  .      (27) 
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After introducing relationships (26) and (27) into Eqn (25), the equation of amplitude is obtained: 

cc FPqCqMK +=+− skckk λλ )( 2  ,       ssskkck FPqMKqC +=−+− )( 2λλ  . (28) 

Moreover, the relationship between the vector )(tF  and forces in dampers )(tui  ( ri ,..,2,1= ) are: 

                                                        	
=

=
r

i
ii tut

1

)()( eF  , (29) 

where ie  is the allocation vector describing the position of the i-th damper on the structure. 
Let us assume that the i-th damper is connected with the points k and j  of which the displacements 

are kq  and jq , respectively (see Figure 2). The following relationships can be written: 

)()()( ttqtq T
ijk qe−=−  ,          c

T
ijckc qq qe−=−  ,             s

T
ijsks qq qe−=−  . (30) 

Figure 2. Diagram of a typical system with dampers. 

Taking into account these principles, Eqns (12) and (13) can be rewritten as follows:  

    s
T
iiiiic

T
iiiiici kkkku qeqe )()( 21201110 Θ+−Θ+−= χχ  ,     (31) 

                                              s
T
iiiiic

T
iiiiisi kkkku qeqe )()( 11102120 Θ+−Θ−−−= χχ  .  (32) 

Index i  means that parameters with the index concern the i-th dampers. 
If the Eqns (31), (32) and (27) are substituted into Eqn (29), the vectors cF  and sF  can be expressed 

as: 

stctc qKqKF )( )2()1(
νν +−=  ,  )( )1()2(

stcts qKqKF νν +−−=  ,      (33) 
where: 

i

r

i
iiiit kk LK  ][

1
1110

)1( 	
=

Θ+= χν  ,     i

r

i
iiiit kk LK  ][

1
2120

)2( 	
=

Θ+= χν  ,       T
iii eeL =  (34) 

After substituting Eqn (33) in the amplitude equation (28), it takes the following form: 

                              cstkcktk PqKCqMKK =++−+ )()( )2(2)1(
νν λλ  , (35) 

                            ssktkctk PqMKKqKC =−+++− )()( 2)1()2( λλ νν  . (36) 

44.  Balance of energy in systems with viscoelastic dampers 
The balance of energy of the system in time t  and Tt + , where λπ /2=T , can be formulated as 
follows: 

 0)()()( =−+ tEtEtE wtk  ,      0)()()( =+−+++ TtETtETtE wtk  .     (37) 

The symbols )(tEk , )(tEt  and )(tEw  denote energy of the system, energy of the dampers, and work 

of the excitation forces in time t , respectively. The change of energy during one period of the cycle T
is: 
          0)()()()()()( =++−−++−+ tETtEtETtEtETtE wwttkk  .     (38) 
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The energy of the system consists of the kinetic, elastic and dissipated energies. The energy of the 
dampers consists of the kinetic and dissipated energies.  

Because the system vibrates harmonically, changes of its kinetic and elastic energies are equal to 
zero. Then Eqn (38) can be rewritten in the form: 

    wtk EEE Δ=Δ+Δ  ,       (39) 

where the symbols kEΔ , tEΔ  and wEΔ  denote changes of the energy dissipated by the system, 
dissipated by the dampers and work of the external forces during one period of the cycle T , 
respectively. It can be assumed without losing the generality of considerations that 0=t . 

Changes of both the elastic and dissipated energies of the i-th damper and vibrating harmonically 
with the period T  are calculated as follows: 

    �=Δ
T

ti ttxtuE
0

d)()( �  ,       (40) 

where jk qqtx −=)(  is the difference of displacements of damper’s ends (see Figure 1). 

After substituting relationship (5) into (40) and integrating Eqn (40) with respect to time, the 
following is obtained: 

   ))(()( 22
2120 sccsscti xxkkxuxuE +Θ+=−=Δ χππ  ,     (41) 

where jskss qqx −= , jckcc qqx −= . 

The damper vibrates harmonically, it means that the change of elastic energy is equal to zero in the 
damper and the relationships (40) and (41) are the definitions of change of the energy dissipated by the 
damper. 

If the viscous damping forces are a load to the system, then a change of the energy dissipated by the 
system (without analyzing the dampers) is given by Eqn (42):  

   )(d)()(
0

sk
T
sck

T
c

T

k
T

tk tttE qCqqCqqCq +==Δ � πλ��  ,     (42) 

where kC is the matrix of viscous damping of the system. 
A change of the work of the excitation forces can be calculated from the formula: 

   )(d)()(
0

c
T
ss

T
c

T
T

w tttE qPqPqP −==Δ � π�  .      (43) 

Temperature in VE dampers can change with environmental temperature and during the process of 
energy dissipation when dissipated energy is changed to the heat. The latter is so-called the self-
heating phenomenon. The increase of temperature is important when structures are subjected to winds. 
More detailed analysis of effects of temperature on VE dampers can be found in [12-17]. 

55.  Results of numerical analysis 

5.1.  Example 1 – basic properties of systems with VE dampers 
The system shown in Figure 3 was analyzed. A force tt c λcos)( PP =  was applied upon it where 

TkN] 0.5  ,0.0  ,0.0  ,0.0[=cP . It is assumed that: kg 0.44000321 === mmm , kg 0.220004 =m , 

MN/m 0.150321 === kkk , MN/m 0.454 =k . The damping matrix was determined based on the 

equation: kkk KMC 10 αα +=  where 34.00 =α  and 000533.01 =α . In all examples, dampers 
parameters used are similar to parameters of VE materials investigated in the paper [18].
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Figure 3. Diagram of the analysed system. 

Systems with and without viscoelastic dampers, arranged as illustrated in Figure 3, were analyzed. 

The dampers were characterized by the following parameters: 7.0=α , /mMNs 2.00
α=tc , 

MN/m 0.1500 =tk , /mMNs03,01
α=tc , MN/m 7.41 =tk . 

The response curves were plotted for the systems without dampers and with different rheological 
damper models. The curves are shown in Figure 4. Moreover, the maximum amplitudes of resonance 
vibrations of a system with different types of dampers are shown in Table 1. 

Figure 4. Response curves for system with dampers modeled by different rheological models. 

Table 1. Amplitudes of vibration in resonances for system with dampers of different types. 

Damper type 

First resonance Second resonance 

Resonance 
frequency 

[rad/s] 

Amplitude of 
vibration  

[m] 

Resonance 
frequency 

[rad/s] 

Amplitude of 
vibration  

[m] 

no dampers 22.2 0.005638 49.7 0.001674 

Spring pot 22.2 0.004383 50.3 0.000685 

Kelvin 23.5 0.003993 60.1 0.000578 

Maxwell 22.2 0.005418 49.8 0.001398 

Zener 23.5 0.003908 60.1 0.000543 

Figures 5 and 6 show the results of calculations of the energy dissipated by the dampers. The same 
results are presented in Table 2, where the maximum values of dissipated energies and work of 
external forces are given. Figure 5 shows how the dissipation energy changes with excitation 
frequency for different types of dampers. 

Figure 6 shows changes of energy dissipated by individual Zener dampers vs. excitation frequency. 
The analogous graphs are similar as for other types of dampers. In Table 3, the maximum values of 
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energy dissipated by the individual dampers, modeled as different rheological types are shown in both 
resonance regions. 

Figure 5. Energy dissipated by system with dampers vs. excitation frequency. 

Figure 6. Energy dissipated by first and second dampers modeled by the Zener model. 

Table 2. Maximum work of external force and maximum dissipation energy.

Damper type 

1st resonance 2nd resonance 

Work of 
external 

force 
[J] 

Energy 
dissipated 
by system 

[J] 

Energy 
dissipated by 
dampers [J] 

Work of 
external 

force 
[J] 

Energy 
dissipated by 

system 
[J] 

Energy 
dissipated by 
dampers [J] 

no damper 88.337 88.337 - 26.262 26.262 - 

spring pot 68.423 53.970 14.502 10.747 4.464 6.285 

Kelvin 62.720 53.065 9.654 9.076 4.845 4.232 

Maxwell 84.766 81.591 3.175 21.925 18.343 3.581 

Zener 61.357 50.811 10.546 8.521 4.293 4.236 
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Table 3. Maximum energy dissipated by single dampers in two resonance regions.  

Damper 
type 

Energy dissipated by dampers [J] 

1st resonance 2nd resonance 

1st damper 2nd damper 1st damper 2nd damper 

Spring pot 9.153 5.490 0.451 5.834 

Kelvin 7.543 2.110 0.685 3.550 

Maxwell 1.968 1.206 0.247 3.333 

Zener 8.240 2.306 0.690 3.548 

Several remarks can be formulated on the basis of calculations conducted by the authors: 
1. Amplitudes of resonance vibrations may be significantly reduced using the mentioned dampers.  
2. The extent of reduction of vibrations depends on damper type. Dampers modeled with the spring-

pot and Maxwell models reduce the amplitude of vibrations to a smaller degree, compared with 
dampers modeled with the Kelvin and Zener models. 

3. The resonance frequencies of vibrations of the system with the spring pot and Maxwell model 
dampers do not change noticeably, compared with the systems with no dampers. In contrast, 
frequencies of resonance vibrations of systems with the Kelvin and Zener type of dampers may 
increase significantly. The difference depends on the proportion between the stiffness coefficients 
of the system and the stiffness coefficients of the dampers. 

4. In the case discussed in this paper, the first damper dissipates energy mainly in the first resonance 
region and the second damper does in the second one, regardless of the damper model. 

5.2.  Example 2 – temperature effects on responses of systems with dampers  
The system shown in Figure 3 was analyzed. For the purpose of calculations, the same set of data as in 
Example 1 is adopted. Dampers are described with the fractional Zener model. The following values 

of dampers’ parameters were used (valid for the reference temperature C 20 o
0 =T ): 7.0=α , 

kN/m 85.5420 =k , MN/m757.3321 =k , /mkNs 84.521 �

,1 =refc  /mNs 0.0 �

,0 =refc , 23.91 =C  and 

2.1412 =C . Calculation were performed for the following range of temperature: CT o30min −= , 

CT o30max = . 

Figure 7 shows changes of the shift factor value vs. temperature. It can be noticed that Tα~  decreases 
with increasing temperature. Figure 8 illustrates the nature of changes of maximum vibrations’ 
amplitudes in the first resonance region depending on damper’s temperature. The maximum 
amplitudes decrease for the lower range of temperatures and they start to increase after exceeding 

CT o20−= . The change of temperature causes significant changes in the vibrations’ amplitude. 

66.  Concluding remarks 
The steady state responses of systems with viscoelastic dampers are considered in the paper. A set of 
fractional rheological models are considered as models of dampers. The Caputo fractional derivatives 
are used to describe viscoelastic dampers. The impact of environmental temperature on the behavior of 
a system with viscoelastic dampers is considered using the time-temperature superposition principle. 

Temperature was found to have a significant impact on maximum amplitudes in the first and second 
resonance regions. The unexpected behavior of the system with dampers was observed in the first 
resonance region.  
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Figure 7. The shift factor Tα~  as a function of temperature of dampers. 

Moreover, the equation which describes the balance of energy of the system with dampers was 
derived and some remarks concerning the dissipated energy were formulated. In particular, it was 
shown that the energy dissipated in the resonance regions by the chosen damper provided valuable 
information about the damper’s effectivness and showed which mode of vibration was mainly 
damped. This energy could be a good indicator of the damper’s optimal position. The typical response 
curves of the system with dampers are determined and compared to ilustrate the properties of systems 
and possible reduction of amplitudes.  

Figure 8. Maximum resonance amplitudes vs. temperature of dampers. 

Acknowledgments 
The study was partially supported by the National Science Centre, Poland, as part of Project No. 
DEC/2013/09/B/ST8/01733, carried out in the years 2014-2017, and partially supported by the Poznan 
University of Technology as part of grant No. 01/11/DSPB/0806. 

References 
[1] Soong, T.T and Constantinou, M.C 1994 Passive and Active Structural Vibration Control in 

Civil Engineering, CISM Lecture Notes (New York: Springer-Verlag) 

[2] Huang C and Duan J.S 2016 Steady-state response to periodic excitation in fractional vibration 
system, J. Mech. 32 25-33. 

[3] Chen Y.M, Liu Q.X and Liu J.K 2016 Steady state response analysis for fractional dynamic 
systems based on memory-free principle and harmonic balancing, Int. J. Non-Lin. Mech. 81
154-164. 

[4] Leung A.Y.T, Yang H.X, Zhu P and Guo Z.J 2013 Steady state response of fractionally damped 
nonlinear viscoelastic arches by residue harmonic homotopy, Comp. Struct. 121 10–21 



11

1234567890

IMST 2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 251 (2017) 012091 doi:10.1088/1757-899X/251/1/012091

[5] Leung A.Y.T, Yang H.X and Zhu P 2014 Nonlinear vibrations of viscoelastic plane truss under 
harmonic excitation, Int. J. Struct Stability and Dyn. 14, No. 4, 1450009 (16 pages) 

[6] Failla G 2017 Stationary response of beams and frames with fractional dampers through exact 
frequency response functions, J. Eng. Mech, (in print) 

[7] Lewandowski R 2014 Redukcja drga� konstrukcji budowlanych, (Warszawa: PWN) 

[8] Bagley R.L and Torvik P.J, 1983 Fractional calculus – a different approach to the analysis of 
viscoelastically damped structures, AIAA Journal 21 741-748 

[9] Pawlak Z and Lewandowski R 2013 The continuation metod for the eigenvalue problem of 
structures with viscoelastic dampers, Comp. Struct. 125 53-61 

[10] Galucio A. C, Deü J.F and Ohayon R, 2004 Finite element formulation of viscoelastic sandwich 
beams using fractional derivative operators, Comp. Mech. 33 282-291 

[11] Scott-Blair G.W and Gaffyn J.E 1949 An application of the theory of quasi-properties to the 
treatment of anomalous strain-stress relations. Phil. Mag. 40 80-94. 

[12] de Lima A.M.G, Rade D.A, Lacerda H.B and Araújo C.A 2015 An investigation of the self-
heating phenomenon in viscoelastic materials subjected to cyclic loadings accounting for 
prestress, Mech. Syst. Signal Proc., 58-59 115–127. 

[13] Guo J. W.W, Daniel Y; Montgomery M and Christopoulos C 2016 Thermal-mechanical model 
for predicting the wind and seismic response of viscoelastic dampers, J. Eng. Mech., DOI: 
10.1061/(ASCE)EM.1943-7889.0001121. 

[14] Chang K.C, Tsai M.H, Chang Y.H and Lai M.L 1998 Temperature rise effect of viscoelastically 
damped structures under strong earthquake ground motions, The Chin. J. Mech., 14 125-135. 

[15] Kasai K, Sato D and Huang Y 2006 Analytical methods for viscoelastic damper considering 
heat generation, conduction and transfer under long duration cyclic load. AIG J. Struct. 
Constr. Eng., 599, 61–69 (in Japanese).

[16] Gopalakrishna H.S and Lai M.L 1998 Finite element heat transfer analysis of viscoelastic 
damper for wind applications, J. Wind Eng. Ind. Aerodyn. 77–78 283–295.  

[17] de Cazenove J, Rade D.A, de Lima A.M.G and Araújo C.A 2012 A numerical and experimental 
investigation on self-heating effects in viscoelastic dampers, Mech. Syst. Signal Process 27
433–445. 

[18] Pirk R, Rouleau L, Desmet W and Pluymers B 2016 Validating the modeling of sandwich 
structures with constrained layer damping using fractional derivative models, J Braz. Soc. 
Mech. Sci. Eng. DOI 10.1007/s40430-016-0533-7. 


