This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Contraction rate, flow modification and bed layering impact on scour at the elliptical guide banks

, , and

Published under licence by IOP Publishing Ltd
, , Citation B Gjunsburgs et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 251 012061 DOI 10.1088/1757-899X/251/1/012061

1757-899X/251/1/012061

Abstract

Flow contraction by the bridge crossing structures, intakes, embankments, piers, abutments and guide banks leads to general scour and the local scour in the vicinity of the structures. Local scour is depending on flow, river bed and structures parameters and correct understanding of the impact of each parameter can reduce failure possibility of the structures. The paper explores hydraulic contraction, the discharge redistribution between channel and floodplain during the flood, local flow modification and river bed layering on depth, width and volume of scour hole near the elliptical guide banks on low-land rivers. Experiments in a flume, our method for scour calculation and computer modelling results confirm a considerable impact of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater and river bed layering on the depth, width, and volume of scour hole in steady and unsteady flow, under clear water condition. With increase of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater values, the scour depth increases. At the same contraction rate, but at a different Fr number, the scour depth is different: with increase in the Fr number, the local velocity, backwater, scour depth, width, and volume is increasing. Acceptance of the geometrical contraction of the flow, approach velocity and top sand layer of the river bed for scour depth calculation as accepted now, may be the reason of the structures failure and human life losses.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/251/1/012061