This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Paper The following article is Open access

Reconstruction of dendritic growth by fast tomography and phase field filtering

, , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation H Yasuda et al 2023 IOP Conf. Ser.: Mater. Sci. Eng. 1281 012064 DOI 10.1088/1757-899X/1281/1/012064

1757-899X/1281/1/012064

Abstract

Three dimensional models of dendritic structures during solidification are valuable for building physical models, validating simulated results, estimating some properties such as permeability in the mushy, simulating semisolid deformation and so on. Thus, it is of interest to observe microstructure evolution in situ. Time-resolved tomography combined with X-ray diffraction has allowed us to observe the evolution of dendritic structures and to measure crystallographic orientation in situ. Reconstruction still proves to be difficult for some alloy systems because of the tradeoff between time and spatial resolution. This paper demonstrates the reconstruction of dendritic structures for three different alloy systems (Al-10mass%Cu alloy with a diameter of 4 mm, CrMnFeCoNi alloy with 1 mm, and Zn-4mass%Al alloy with 0.7 mm). The observations were performed in a synchrotron radiation facility SPring-8. A filter using a phase field model was introduced to reconstruct the three-dimensional images. Parameters used in the filtering were consistently determined based on the raw reconstruction images. Evaluation of solid-liquid interface area and curvature was significantly improved by the filter. For the Al-Cu alloy, a three-dimensional model containing approximately 300 million voxels was obtained. For the CrMnFeCoNi alloys, the preferred growth direction <100> was confirmed by tomography and X-ray diffraction. For the Zn-Al alloy, the observed 14 growth directions were not simply defined by the crystallographic orientations, although the directions were consistent with the hexagonal symmetry. This study verifies that time resolved tomography, X-ray diffraction and the filter using a phase field model provide three dimensional models for light metal alloys with rather large diameters and 3d transition-metal alloys with rather large X-ray absorption coefficients. The models are expected to be used for further studies.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/1281/1/012064