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Abstract. The integration of phase-field (PF) simulations and in situ observations is a 
promising approach for understanding dendrite growth. In this study, a preliminary data 
assimilation system is developed to integrate PF simulations and in situ real-time X-ray 
radiography during the directional solidification of a binary alloy. In this system, only the 
region around the tip of a primary arm is used for data assimilation. The validity of the 
developed system is confirmed through twin experiments for columnar dendrite growth 
with different inclined angles of preferred growth direction.  

1.  Introduction 
A highly accurate prediction of dendrite growth is essential for improving the quality of alloy 
products [1]. Thus, dendrite growth has been extensively investigated using numerical simulations 
and experiments. 

The phase-field (PF) method is the most accurate model for dendrite growth. The quantitative 
PF models of dendrite growth [2-4], results of which do not depend on the interface thickness, are 
generally used for alloy solidification. However, the PF method is computationally expensive 
because it is a diffuse interface model. To solve this problem, an adaptive mesh refinement method 
and parallel computing have been applied to PF simulations [5]. Graphics processing units (GPUs) 
have been actively used in recent years [6], and large-scale computing has been performed using 
multiple GPUs in parallel [7-10]. As mentioned above, owing to the development of quantitative PF 
models, computational schemes, and computer hardware, the spatiotemporal domain in which the 
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PF method can be applied is gradually expanding. Nevertheless, the lack of material properties is a 
key issue in the PF simulations for dendrite solidification. 

As metallic alloys are not transparent and alloy solidification occurs at high temperatures, the 
direct observation of dendrite growth was impossible. The time-resolved X-ray imaging of dendritic 
growth was proposed around 2000 [11, 12]. Time-resolved tomography (4D-CT) [13-15] has been 
developed in recent years, and it has advanced the understanding of dendrite growth. However, 4D-
CT observations cannot be applied to fast phenomena owing to their insufficient spatiotemporal 
resolution, as a 3D image is created by reconstructing hundreds of transmission images obtained 
during the half rotation of a cylindrical specimen. 

Data assimilation [16] has been attracting attention as a promising method for integrating 
numerical simulations and experiments. Ohno et al. developed a method for estimating interfacial 
properties by combining molecular dynamics and PF simulations with an ensemble Kalman filter 
(EnKF) and applied it to pure iron and nickel [17, 18]. Yamanaka et al. employed the local ensemble 
transform Kalman filter to dendritic solidification to efficiently estimate material parameters [19, 
20]. Miyoshi et al. proposed a method of simultaneously inferring multiple grain boundary 
properties using the EnKF and multi-phase-field method [21]. However, data assimilation using 
actual experimental data as observation data has not yet been performed. If data assimilation can be 
performed using in situ observations, it will be possible to simultaneously solve the problems of 
spatiotemporal resolution in experiments and the material properties required in simulations. 
However, it is not currently feasible to perform data assimilation using PF simulations for an entire 
region of in situ observations because of computational costs [8]. 

The purpose of this study is to construct a preliminary data assimilation system to integrate in 
situ observations and PF simulations, where observation data is obtained only from the region 
around the dendrite tip of a primary arm during the directional solidification of a binary alloy to 
reduce the computational cost. The validity of the system is confirmed through twin experiments 
and two-dimensional (2D) directional solidification simulations for an Al–Cu alloy. The anisotropy 
strength of interfacial energy and diffusion coefficient of the liquid are simultaneously estimated. 

2.  Data assimilation system 
In this study, the quantitative PF method for binary alloy solidification [3] was applied to directional 
solidification, and the EnKF [17] was used for data assimilation. 

2.1. Phase-field method 
The PF variable, f, is defined as f = 1 in the solid phase and f = –1 in the liquid phase, and f varies 
smoothly from 1 to –1 at the interface. The evolution equation of f is given by 

   (1) 

where t is the relaxation time of f and W is the interface thickness; t = t0 as(Ñf)2 and W = W0 as(Ñf). 
The anisotropy function is as(Ñf) = 1 − 3e4 + 4e4(fx4 + fy4) / |Ñf|4, and e4 is the anisotropy strength of 
interfacial energy. fi denotes the partial derivative of f with respect to i. l* is the quantity associated 
with the thermodynamic driving force. u is dimensionless supersaturation, which is expressed as u = (cl 
– cle)/(cle – cse). cl is the liquid concentration, and  and  are the equilibrium concentrations in 
the liquid and solid, respectively. The temperature change is expressed as T(y) = T0+ G(y - Vt) by 
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applying the frozen temperature approximation, where T0 is the temperature at y = 0 and t = 0, G is 
the temperature gradient in the y-direction, and Vp is the pulling velocity. u' in equation (1) is expressed 
as u' = (y − Vt)/lT using thermal length lT. The time evolution equation of u is given by 

  
(2)

 
where q(f) = [kDs + Dl + (kDs − Dl)f] / (2Dl), k is the partition coefficient, and Dl and Ds are the 
diffusion coefficients of the liquid and solid phases, respectively. jAT is the antitrapping term, which 
is added to perform quantitative calculations independent of the interface width. 
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2.2. Data assimilation 
A sequential data assimilation system that uses the EnKF was developed in this study. The EnKF can 
be applied to nonlinear system models such as the PF equation. The probability distribution of state 
vector  containing unknown parameters is represented by a set, , of N state vectors. This 
is referred to as the ensemble approximation, where N is ensemble members. The state vector of i-
th ensemble member at time t is expressed by xt(i) = {ft(i) ut(i) e4,t(i) Dl,t(i)}T, where ft(i) and ut(i) are the 
vectors of f and u at all grid points at time t, respectively. e4 and Dl are estimated in the twin 
experiments and included in the ensemble member as unknown parameters. xt(i) is updated by 
repeating the prediction and filtering, and the unknown parameters are expected to gradually 
approach the true values in this process. The prediction is based on the following system model: 

  
(3)

 
where subscript t|t–1 in xt|t–1(i) indicates the values at time t obtained using the values at time t – 1. 
ft is a nonlinear map from xt-1 to xt, and it corresponds to equations (1) and (2). vt(i) is system noise, 
which follows a Gaussian distribution with mean vector 0 and variance–covariance matrix Qt. vt(i) is 
used to express the uncertainty of numerical simulation. The state vector is updated at every time 
step in the simulation with time increment Dt on the basis of equation (3). At time t = nDtobs, when 
observed data are available, the state vector is updated by filtering with the following equation: 

  (4) 

where Kt is the Kalman gain, which determines the degree of correction of the state vector on the 
basis of the observation data. It is computed as Kt = Vt HtT (HtVtHtT + Rt)–1, where 

 and . Observation matrix Ht is computed 

from the observation model, , and observation noise wt(i) follows a Gaussian 

distribution with mean vector 0 and variance–covariance matrix Rt. In equation (4),  is 

expressed as , and  is referred to as the disturbed observation. For 

simplicity, we consider Rt = sr2I with variance sr2, covariance 0, and unit matrix I.  

  

Table 1. Material properties of Al–3wt%Cu and simulation conditions for obtaining observation 
data. “*” denotes artificially determined values. 

Parameter Symbol Value 
Initial concentration C0 0.013 at.frac. 
Melting point of pure Al  Tm 933.25 K 
Partition coefficient k 0.14 
Anisotropic strength e4 0.009 * 
Gibbs–Thomson coefficient G 0.24 ×10-6 Km 
Diffusion coefficient in liquid Dl 2.0 ×10-9 m2/s * 
Diffusion coefficient in solid Ds 2.0 ×10-13 m2/s * 
Liquidus slope m -620 K/at.frac 
Temperature gradient G 100 K/mm 
Pulling velocity Vp 100 µm/s 
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Computational domain size Lx × Ly 1000 × 6000Dx2 
Grid size Dx 0.4 µm 
Interface thickness W0 Dx /0.6 
Time increment Dt 1.6 × 10-5 s 

3.  Observation data 
The 2D directional solidification PF simulations of Al–3wt%Cu were carried out to generate 
observation data for the twin experiments. The material properties and calculation conditions are 
listed in table 1. e4 and Dl were set to assumed values and these values will be estimated in the EnKF. 
The simulations were performed for two different preferred growth directions with q  = 0° and q  = 
15°, where q is the angle between the preferential growth direction and temperature gradient 
direction (y-axis). As the initial conditions, the entire computational domain was filled with a liquid 
phase with u0 = -0.295, and a semicircular solid with radius 6Dx was placed at the center of the 
bottom of the computational domain. Figures 1(a) and (b) depict the simulation results for q = 0° 
and q = 15°, respectively. Typical columnar dendrites grew in the temperature gradient direction 
with secondary arms. 

 
Figure 1. Time evolution of dendrite morphology for (a) q  = 0° and (b) q  = 15°. (c) Dendrite tip 
regions enclosed by rectangular red regions in (a) and (b), which correspond to the simulation domain 
in prediction of data assimilation. The rectangular green regions were used for filtering. 

Table 2. Parameters used in the twin experiments. 
Parameter Symbol Value 
Ensemble size N 100 
Variance of observation noise sr2 1.0 
Initial value of e4 e4, init 0.005 
Initial standard deviation of e4 se4, init 0.5 × e4, init 
Initial value of Dl Dl, init 1.0 × 10-9 
Initial standard deviation of Dl sDl, init 0.25 × Dl, init 
Variance of system noise for f sf2 1.0 × 10-6 
Variance of system noise for u su2 1.0 × 10-8 
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Variance of noise for e4 se42 1.0 × 10-11 
Variance of noise for Dl sDl2 1.0 × 10-23 

4.  Twin experiments 
e4 and Dl were inferred through the twin experiments to confirm the validity of the developed data 
assimilation system. We used only the region around the dendrite tip of the primary arm to reduce 
the computational cost of data assimilation. The size of the region was set to lx × ly = 400 × 600 µm2 
(1000 × 1500Dx2) so that the solute diffusion field in front of the dendrite tip did not reach the upper 
edge of the region. The rectangular red regions were extracted from the results presented in figure 1 so 
that the dendrite tip was always positioned at (lx/2, ly/4). For q = 15°, the domain was shifted in the 
lateral direction such that the tip position was (lx/2, ly/4). We obtained 50 data of microstructure (f 
profile) during t = 14.4 s–15.2 s as the observation data. Thus, the time increment of the observation 
data was Dtobs = 0.016 s. As the explicit scheme was used for the time derivatives of equations (1) and 
(2), the time increment changed depending on Dl. Hence, the maximum value of Dl was set as 4.0 × 10-

9 m/s2, which was twice the true value presented in table 1, and the time increment was set as 0.8 × 10-5 
s. The PF simulations during data assimilation were carried out using a moving frame algorithm to 
maintain the dendrite tip position at (lx/2, ly/4) using the region illustrated in figure 1(c). For q = 15°, 
the lateral motion of the region was also introduced to maintain the dendrite tip position at (lx/2, 
ly/4). The boundary conditions were set as periodic on the left and right sides and zero Neumann on 
the top and bottom. When the moving frame algorithm is used in a small region, as depicted in 
figure 1(c), the solidification morphology at the lower end of the region may be destabilized by the 
zero-Neumann condition. Therefore, data assimilation was performed in the green frame, which 
did not include the lower edge. Observation vector yt was set as yt = ftobs. The other conditions for 
data assimilation are listed in table 2.  

 
Figure 2. Inference results obtained during data assimilation for (a) anisotropy strength of 

interfacial energy, e4, and (b) diffusion coefficient of liquid, Dl, for the observation data for q  = 0°. 
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Figure 3. Inference results obtained during data assimilation for (a) anisotropy strength of 
interfacial energy, e4, and (b) diffusion coefficient of liquid, Dl, for the observation data for q = 15°. 

Figure 2 presents the inference results of e4 and Dl for q = 0°. The red dashed line represents the 
true value, the blue line represents the change in the estimated average value, and the error bars 
represent the standard deviation of the estimated values. Dl rapidly approached the true value from 
the initial value, and the approximate true value was estimated in the second filtering. In contrast, 
the inferred value of e4 approached the true value in approximately the 40th filtering. The difference 
between the convergence behaviors of e4 and Dl depended on their contribution to the dendrite tip 
shape. Although e4 and Dl affected the tip morphology of the dendrite, the effect of Dl was stronger 
than that of e4. Nevertheless, we successfully inferred e4 and Dl simultaneously using the developed 
data assimilation system. 

Figure 3 presents the inference results of e4 and Dl for q  = 15°. The tendency of the convergence 
behaviors of e4 and Dl was similar to that illustrated in figure 2. However, the fluctuations for q  = 
15° were larger than those for q = 0°. In addition, the convergence of e4 to the true value was 
comparatively slower for q = 15°. As illustrated in figure 1, when the rectangular red regions were 
extracted, the data was converted such that the position of the dendrite tip was (lx/2, ly/4). Subsequently, 
the data was shifted to a unit of the grid size. In addition, the moving frame algorithm in the PF 
simulations was applied in a unit of the grid size. These migrations in the x-direction caused the 
error in the inference of e4 for q  = 15°. In other words, the effect of the deviation of the interface 
position between the observation data and simulations was stronger for e4 compared to that for Dl. 
Nevertheless, the estimation accuracy was less than 10%, even for e4. Thus, the estimation was highly 
accurate even when the dendrite was inclined. 

5.  Conclusions 
A preliminary data assimilation system was developed to integrate PF simulations and in situ real-
time X-ray radiography during the directional solidification of a binary alloy. Observation data were 
obtained from the region around the tip of a primary arm to reduce the computational cost. The 
validity of the developed system was confirmed through twin experiments of the 2D directional 
solidification of an Al–Cu alloy with different inclined angles of the dendrite. In future work, we 
will apply the proposed system to the time-resolved X-ray imaging of dendritic growth during 
directional solidification. 
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