Brought to you by:
Paper The following article is Open access

Optimisation of panel component regions subject to hot stamping constraints using a novel deep-learning-based platform

, and

Published under licence by IOP Publishing Ltd
, , Citation H R Attar et al 2022 IOP Conf. Ser.: Mater. Sci. Eng. 1270 012123 DOI 10.1088/1757-899X/1270/1/012123

1757-899X/1270/1/012123

Abstract

The latest hot stamping processes can enable efficient production of complex shaped panel components with high stiffness-to-weight ratios. However, structural redesign for these intricate processes can be challenging, because compared to cold forming, the non-isothermal and dynamic nature of these processes introduces complexity and unfamiliarity among industrial designers. In industrial practice, trial-and-error approaches are currently used to update non-feasible designs where complicated forming simulations are needed each time a design change is made. A superior approach to structural redesign for hot stamping processes is demonstrated in this paper which applies a novel deep-learning-based optimisation platform. The platform consists of the interaction between two neural networks: a generator that creates 3D panel component geometries and an evaluator that predicts their post-stamping thinning distributions. Guided by these distributions the geometry is iteratively updated by a gradient-based optimisation technique. In the application presented in this paper, panel component geometries are optimised to meet imposed constraints that are derived from post-stamping thinning distributions. In addition, a new methodology is applied to select arbitrary geometric regions that are to be fixed during the optimisation. Overall, it is demonstrated that the platform is capable of optimising selective regions of panel component subject to imposed post-stamped thinning distribution constraints.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/1270/1/012123