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Abstract. Controlling the hot rolling process requires a deep understanding of the underlying 

metallurgical phenomena. Quantitative methods are of paramount importance for achieving the 

capability of controlling microstructural evolution. Since the final mechanical properties of 

steel result from microstructural evolution in the whole process, analysis of the microstructure 

provides an important input for numerical simulations that can be used for tailoring the 

mechanical properties of steel. The evolution of grain size distribution of a low-carbon 

CrNiMnB ultrahigh-steel in austenitic state is studied in hot forming and annealing using 

experimental data obtained with the Gleeble 3800 thermo-mechanical simulator. A general 

method is described that can be utilized to systematically compare the grain size distributions 

obtained from the experimental studies. The experimental data has been obtained from laser 

scanning confocal microscopy images using the mean linear intercept method. A custom-made 

semi-automatic software has been utilized to process the data rapidly and reliably. 

1. Introduction 

The microstructure of steel plays an essential role when considering its mechanical properties. 

Understanding the evolution of the microstructure of steel becomes more important in order to apply 

the material in more demanding conditions. In [1], microstructure and its effect on the mechanical 

properties of steel was studied. Refining austenite grain size and austenite pancaking were found to 

improve mechanical properties for low-carbon low-alloyed TMCP-DQ martensitic-bainitic steels. In 

[2], the Hall-Petch relation between flow stress and grain size was discussed. Conventional and ultra-

fine grain structures of Cu were studied, and dislocation structure evolution was modelled. 

Many different models have been developed to simulate microstructural evolution. In [3], a finite 

element method (FEM) model for the thermomechanical simulator Gleeble 3800 was developed and a 

recrystallization model was implemented to simulate recrystallization in different parts around the test 

piece cross-section. In addition, various mean field models simulating the average grain size after 

recrystallization were investigated. In [4], a physically based static recrystallization model was 

implemented and fitted successfully into experimental stress relaxation test data. The results are 

promising, but further studies are required to improve model prediction reliability. 

Validating models that simulate microstructural evolution requires high-quality experimental studies 

that produce diverse data depicting the microstructure as accurately as possible. One way to study 

microstructure is with a single mean value, like the mean linear intercept grain size [5]. In the current 

study, experimental data is used to construct a probability density function for linear intercept interval 
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length, which is capable of depicting grain size distribution and allows for comparison of statistical 

parameters to better understand test parameter dependencies. 

2. Theory 

In the current study a technique is proposed for finding a suitable continuous and differentiable 

function for describing the cumulative probability distribution (CPD) of the linear intercepts x. The 

probability density (PD) can then be obtained by differentiating the obtained function with respect to 

the linear intercept interval length. 

2.1. Polynomial fitting 

The cumulative probability density can be described by equation (1) 

 𝐶𝑃𝐷(𝑥) = 1 − exp(−𝑓(𝑥)) (1) 

Since d𝐶𝑃𝐷(𝑥)/d𝑥 = d𝑓(𝑥)/d𝑥 ∙ exp(−𝑓(𝑥)), CPD is increasing if and only if 𝑓(𝑥) is increasing. 

Since 𝐶𝑃𝐷 must be increasing or zero for every x, the derivative of 𝑓(𝑥) is always positive or zero and 

for this reason there exists 𝑔(𝑥)  such that d𝑓/d𝑥 = 𝑔(𝑥)2 ≥ 0 . Since 𝑓(𝑥) = 0  when 𝑥 = 0 , the 

function is described by equation (2) 

  𝑓(𝑥) = ∫ 𝑔(𝑥′)2𝑥

0
𝑑𝑥′ (2) 

where 𝑥’ is an integration variable. Assuming that the function 𝑔(𝑥) is sufficiently smooth, so that n:th 

order derivative exists for every 𝑥 , it can be expressed as n:th order Taylor polynomial 𝑔(𝑥) =
Σ0

𝑛(𝑎𝑛𝑥𝑛). Solving equation (1) for 𝑓(𝑥) and inserting it to equation (2) yields then equation (3). 

 − ln(1 − 𝐶𝑃𝐷(𝑥)) = ∫ (Σ0
𝑛𝑎𝑛𝑥𝑛)2𝑥

0
𝑑𝑥′ (3) 

In equation (3) the left-hand side can be calculated directly from the obtained data. An analytic 

expression for the right-hand side of equation (3) was obtained by raising the polynomial to the second 

power and integrating the terms by using computer algebra system, such as Maxima [6] or Sympy [7]. 

The resulting function has the coefficients 𝑎𝑛  that were used as fitting parameters. The chosen 

approach has the benefit that the derivative of the function describing CPD(x) is guaranteed to be 

always non-negative. 

2.2. Log-normal fitting 

Another way to describe distributions is the log-normal method [8], where CPD is obtained with 

equation (4). 

  𝐹𝑋(𝑥) =
1

2
[1 + erf (

ln 𝑥−𝜇

𝜎√2
)] (4) 

Where 𝜇 and 𝜎 are fitting parameters. A convenient way to obtain the PD function is using the form in 

equation (5). 

 𝑓𝑋(𝑥) =
1

𝑥𝜎√2𝜋
exp (−

(ln 𝑥−𝜇)2

2𝜎2 ) (5) 

3. Experimental work 

An ultrahigh strength steel with the chemical composition given in table 1 was investigated. The 

material was received in the form of homogenized hot-rolled 12 mm-thick plates. Cylindrical 

specimen of dimensions Ø10x12 mm were machined. Interrupted stress relaxation tests were 

performed using Gleeble 3800 thermomechanical simulator. The samples were heated at 10 °C/s to 

1250 °C and held for 120 s for homogenization, then cooled at 2 °C/s to the deformation temperature 

where samples were held for 15 s prior compression up to the prescribed strain. Using the stroke mode, 

the strain was held constant after the deformation and the compression force relaxed as a function of 
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holding time. The interrupted stress relaxation tests were performed using a single strain rate 10 s−1 in 

the temperature range 950-1250 °C, strain range 0.2-0.6 and holding time range 0-60 s to have 

different deformation parameters for evaluating the grain growth.  To reveal the prior austenite grains, 

the polished samples were etched using picric acid solution. 

Table 1. Chemical composition of the investigated steel (in wt.%). 

C Si Mn Cr Ni Al B N 

0.16 0.2 1.0 0.5 0.5 0.03 0.0015 0.0050 

4. Methods 

4.1. Grain size calculator 

In this study, all the grain size distributions are based on experimental data obtained from laser 

scanning confocal microscopy images. The images are processed with a novel self-made GUI tool for 

grain size calculations, called grain size calculator [9], see figure 1. The tool is based on the mean 

linear intercept method, where multiple lines are drawn on the image and each intercept with a grain 

boundary is marked and counted together to calculate a mean linear intercept grain size [5]. With the 

tool, user draws lines and marks each boundary. Then it calculates various values, most importantly 

for the current study the length between each consecutive linear intercept. Although the linear 

intercept intervals do not directly represent the grain diameter, they are closely related to the grain size. 

The relation between linear intercept interval and grain size is discussed in more detail in [5]. 

 

 

Figure 1. example grain structure image with linear intercepts marked, including the resulting 

histogram with horizontal, vertical and total instance percentages. 
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The linear intercept interval lengths are used to form a random variable data set. This can be used to 

create a histogram to study linear intercept interval distribution. The problem with histograms is 

choosing bin length, which always affects the data visualization and is arbitrarily chosen by user. A 

new approach was chosen in this study to avoid the problem of choosing the bin length. In the current 

approach the data set is converted into a continuous probability density function by applying the 

method described below.  

4.2. Fitting technique – polynomial 

First, the CPD is obtained from the data set by ordering the data by size, and then normalizing their 

cumulative count. CPD function is then calculated in the way explained by equation (3) and an nth 

Taylor polynomial is fitted to the data, see figure 2-a). Next, the analytical expression of CPD is 

calculated by equation (1), see figure 2-b). Finally, the analytical equation is derivated by linear 

intercept interval length, which produces the probability density function in figure 2-c). 

 

Figure 2. Method to create a probability density function for the linear intercept interval lengths with 

the polynomial fitting technique. 

During the fitting many techniques were tested, and the following methods produced satisfactory 

results. Sum of difference minimization algorithm was used, using the Nelder-Mead -algorithm in the 

minimize-function of the Python3 scipy-module. Taylor polynomials of different order were tested for 

the function 𝑔(𝑥). They were generated with Python3 module sympy and individually fitted, the order 

of the polynomial was varied from 1 to 10. For the fitting, the initial values for parameters 𝑎𝑖 were 

randomized values in closed interval [0,1]. For each 𝑎𝑖, the order of the initial guess was 10−𝑖, where 

𝑖 ∈ [1,10] ⊂ ℕ, to prevent too large emphasis for higher order terms. The linear intercept intervals 

were normalized for the same reason. The fitting was executed twice, the second fit having the first 

fitted values as starting values, to help the fitting algorithm in finding the minimum. Each polynomial 

was tested with 10 different random starting values, and the best fit was chosen according to the 

smallest sum of difference. Finally, the best polynomial was chosen based on this principle. 
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4.3. Fitting technique – Log-normal 

The log-normal fitting is similar, but more straight-forward than the polynomial fitting described in 

section 4.2. Equation (4) is fitted with the sum of difference minimization algorithm directly into the 

data set CPD, see figure 3-a, and the fitting parameters 𝜇 and 𝜎 are used in equation (5) to obtain the 

PD function, see figure 3(b). 

 

Figure 3. Method to create a probability density function for the linear intercept interval lengths with 

the log-normal fitting technique. 

5. Results 

5.1. Comparison of methods 

An example case of temperature 1050 °C, strain 0.2 and holding time 0 s was chosen in figure 4 for 

comparing histograms and probability density functions. As can be seen, changing the bin length has a 

major impact on the data set -based histogram data, whereas the probability density function does not 

require this definition. 

 

 

Figure 4. Comparison between a polynomial PD function and histograms with (a) 5, (b) 20 and 

(c) 100 bins. 
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The same test case (1050 °C – 0.2 – 0 s) was used to compare the polynomial and log-normal fitting 

methods, see figure 5. From the fitted cumulative probability densities, it can be seen that both 

methods are able to describe the experimental data. Log-normal fit matches the start of experimental 

data slightly better and polynomial fit matches the end better. 

 

Figure 5. Comparison between 20 bin histogram data set, polynomial fitting and log-normal fitting. 

The two fitting methods are not compared further in this study, but they will be thoroughly studied in 

the future. The rest of this study will focus on the polynomial fitting method. Multiple temperatures, 

strains and holding times are compared with the goal of learning more about how each variable affects 

grain size distribution. Another goal is to use the data as a test case for the proposed probability 

density polynomial function generation method. 

5.2. Holding time 

Figure 6 includes microstructural images for holding times 0, 30 and 60 s with temperature 1050 °C 

and strain 0.4. Their probability density functions, and data set histograms are collected to a single 

figure for comparison. Note the slightly different sized scale bar in figure 6(c). Figure 7 shows the 

effect of holding time for each temperature, with strain set to 0.2. 
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Figure 6. Microstructural images and corresponding probability density functions and data sets for 

temperature 1050 °C, strain 0.4 and holding times (a) 0, (b) 30 and (c) 60 s. 

 

Figure 7. Distribution density functions for holding times 0, 30 and 60 s with strain 0.2 and 

temperatures (a) 1050, (b) 1150 and (c) 1250 °C. 
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As shown in figure 7, holding time has a major impact on the grain size. At 0 s there are many small 

grains, most likely because new nucleating grains occupy most of the test piece. 30 s and 60 s cases 

have a smaller likelihood for small grains, but the difference is not as distinct between the two. This is 

expected to be due to the fact that recrystallization has completed, and the test sample has reached the 

grain growth stage, where new nucleated grains have collided into each other and continue growing 

with a much slower pace. 

5.3. Strain 

Figure 8 includes microstructural images for strains 0.2, 0.4 and 0.6 with temperature 1050 °C and 

holding time 0 s. Their probability density functions, and data set histograms are collected to a single 

figure for comparison. Figure 9 shows the effect of strain for each holding time, with temperature set 

to 1050 °C. 

 

 

Figure 8. Microstructural images and corresponding probability density functions and data sets for 

temperature 1050 °C, holding time 0 s and strains (a) 0.2, (b) 0.4 and (c) 0.6. 

 



The 19th International Conference on Metal Forming (MF 2022)
IOP Conf. Series: Materials Science and Engineering 1270  (2022) 012077

IOP Publishing
doi:10.1088/1757-899X/1270/1/012077

9

 
 
 
 
 
 

 

Figure 9. Probability density functions for strains 0.2, 0.4 and 0.6 with temperature 1050 °C and 

holding times (a) 0, (b) 30 and (c) 60 s. 

At 0 s, higher strain causes a higher number of small grains. The small grains are likely freshly 

nucleated recrystallized grains, and their increasing amount suggests faster recrystallization start with 

higher strains. The effect of strain is difficult to observe with the presented method for 30 and 60 s. 

The effect of strain could be further investigated by inspecting the aspect ratio, but in the current study 

aspect ratio analysis is omitted. 

5.4. Temperature 

Figure 10 includes microstructural images for temperatures 1050, 1150 and 1250 °C with strain 0.4 

and holding time 30 s. Their probability density functions, and data set histograms are collected to a 

single figure for comparison. Figure 11 shows the effect of temperature for each holding time, with 

strain set to 0.2. 
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Figure 10. Microstructural images and corresponding probability density functions and data sets for 

strain 0.2, holding time 30 s and temperatures (a) 1050, (b) 1150 and (c) 1250 °C. 

 

Figure 11. Probability density functions for temperatures 1050, 1150 and 1250 °C with strain 0.2 and 

holding times (a) 0, (b) 30 and (c) 60 s. 
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From the probability density functions it can be seen that temperature has a clear effect on linear 

intercept interval length: increasing temperature decreases the likelihood of small grains and increases 

the maximum interval length. Especially at 1250 °C the maximum grain size increases greatly.  

5.5. Statistical parameters 

Probability density functions are easy to compare against each other, as they have clearly defined 

function parameters. Central tendency parameters of the probability density functions and data set 

histograms for each case will be studied below. The number of bins in the histograms is set to 20 for 

easier comparison. 

5.5.1. Mode. Mode is obtained for histogram data sets by selecting the highest bar in the histogram and 

for probability density functions by selecting the maximum value of the curve. In figure 12-a) they are 

compared against each other with varying temperature, strain and holding time. Data set (figure 12(b)) 

and probability density function (figure 12(c)) modes are plotted for different temperatures with strain 

and holding time. 

 

 

Figure 12. Modes with different temperatures, strains and holding times obtained from the probability 

density functions and histograms. 

Modes show major changes between the probability density functions and data set histograms. 

Looking at both cases individually, function values show a clear increase for both temperature and 

holding time. Histogram data set values, on the other hand, have great differences and it takes a lot of 

imagination to find the trending effect of temperature and holding time. In this respect the probability 

density function seems to work better with modes. 
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5.5.2. Median. Median is obtained for data sets by choosing the midpoint of the ordered data set. 

Probability density function median is obtained by choosing the 50% cumulative distribution point. In 

figure 13 medians are presented similarly to modes. 

 

 

Figure 13. Medians with different temperatures, strains and holding times obtained from the 

probability density functions and histograms. 

Medians have quite a bit of similarity between histogram data sets and their probability density 

functions. Both show the effect of temperature and holding time. 

5.5.3. Average. Average value is obtained for the data sets by summing each datapoint together, then 

dividing that sum with the amount of datapoints. For probability density function the value is obtained 

by finding the linear intercept interval length value corresponding to the inverse of the division 

between maximum value and minimum value, 𝑦𝑎𝑣𝑔 = 1/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛). In figure 14 averages are 

presented similarly to modes. 
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Figure 14. Average values with different temperatures, strains and holding times obtained from the 

probability density functions and histograms. 

Averages show function values to be quite a bit larger than the data set. This is likely caused by the 

majority of the counted intercept intervals being small, which naturally emphasizes smaller grain sizes. 

6. Conclusion 

In summary, it was shown that the proposed polynomial probability density function generation 

method is viable and provides a probability density with an analytical function that is easy to use for 

further data analyzation. Data sets, here depicted as histograms, have some challenges in data 

visualization that can be avoided by using probability density functions.  

Preliminary study between polynomial and log-normal fitting methods was conducted, and both seem 

to work quite well. The polynomial method is more complex and includes more fitting parameters than 

log-normal but is able to reproduce a wider range of data behaviors. 

Chosen central tendencies were compared for both the data set and its analytical function and the 

expected, well-known, effect of temperature and holding time were found. Effect of strain could not be 

seen so easily with the chosen method. Grain aspect ratio might be a useful parameter to study the 

effect of strain further. 

In the future, more in-depth probability density function comparison studies are planned, mainly 

focusing on the parameters defining curve shape. In addition, the possibility of finding a regression 

model capable of predicting grain size distribution evolution during static recrystallization and grain 

growth will be rigorously examined. 
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