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Abstract. The prior knowledge of incipient failures of primary flight command 

electromechanical actuators (EMAs) with prognostic algorithms can be very beneficial. Indeed, 

early and proper detection and interpretation of the deterioration pattern can warn for replacing 

the servomechanism before the actual manifestation of the abnormal behaviour. Furthermore, 

such algorithms often exploit a model-based approach established on the direct comparison 

between the actual (High Fidelity) and the monitor (Low Fidelity) systems to identify fault 

parameters through optimization processes. The monitor model allows the acquisition of 

accurate and precise results with a contained computational effort. The authors developed a 

new simplified monitor model capable of faithfully reproducing the dynamic response of a 

typical aerospace EMA equipped with a Permanent Magnet Sinusoidal Motor (PMSM). This 

digital twin senses mechanical and electrical faults: friction, backlash, coil short circuit, static 

rotor eccentricity, and proportional gain. Fault detection and identification task are performed 

by comparing the output signal of the reference system (real or simulated) with the one 

obtained from the monitor model. After that, the Genetic Algorithm is chosen as the 

optimization algorithm to match the two signals by iteratively changing the fault parameters to 

detect the global minimum of a quadratic error function. Once a suitable fit is obtained, the 

corresponding optimization parameters are correlated with the considered progressive failures 

to evaluate the system's health status. The high-fidelity reference models analysed in this work 

have been previously conceived, developed, implemented in Matlab-Simulink, and validated 

experimentally by researchers of the ASTRA group of the DIMEAS of Politecnico di Torino. 

1.  Introduction 

Primary flight controls are a critical feature of an aircraft and hence designed with a conservative safe-

life approach: components are replaced after a certain number of flight hours or operating cycles. 

When applying this approach, the actual condition of the components is not assessed, and maintenance 

is limited to the specific scheduled operation. Particularly, the safe life design criterion doesn’t allow 

to assess initial defects, which could arise from the manufacturing process and escalate into a sudden 

fault that compromises the safety of the aircraft. The gradual degradation of a component, which 

initially does not present any unacceptable behavior, often leads to a condition in which the efficiency 

of such a component is weakened, and as a consequence the functionality of the whole system is 

compromised. In addition, the safe-life criterion does not allow the detection of the cause and location 

of the malfunction, whereas an accurate identification of the specific failed subcomponent could be 

effective in reducing maintenance inefficiencies and costs. New tools with a high grade of robustness 

have been developed to identify the most common of the flight control system before they start 

affecting its performance in terms of dynamical response, stability, stall force, or positioning accuracy. 

mailto:matteo.dallavedova@polito.it
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These methodologies gave rise to the engineering discipline called Prognostics and Health 

Management (PHM) [1,2]; its primary purposes are the evaluation of the ongoing state of the system 

and the estimation of the Remaining Useful Life (RUL) [3]. The evaluation of the system’s health is 

carried out by identifying and estimating the entity of faults, in the phase generally defined as fault 

detection and identification (FDI). Since PHM strategies are based on the analysis of the functional 

parameters of the system, acquired in the form of electrical signals, the use of electromechanical 

systems (and in particular electromechanical actuators or EMA) represents an advantage because no 

further signal conversions are needed and no additional sensors are required. Due to the complex and 

multidisciplinary nature of the monitored systems, the FDI task on EMA systems is particularly 

challenging, as different failure modes interact and acceptable accuracy is hardly achieved. A wide 

choice of FDI techniques is nowadays available in literature: direct comparison of the system response 

with an appropriate monitoring model [4,5], spectral analysis of system-specific behaviors [6-8], 

artificial neural networks [9-12], or several combinations of some of these methods [13,14]. Typically, 

model-based approaches are more computationally expensive and require proper system knowledge 

but often give more accurate results than data-driven methods. On the contrary, despite being 

computationally less costly, data-driven techniques approach the system as a black box. In these cases, 

all knowledge of the system behavior is acquired from the raw data and requires large experimental 

training data sets – unfortunately, rarely available [15-17]. By applying PHM strategies in aerospace 

systems, failure may be managed more effectively resulting in lower operating costs, less maintenance 

interventions, relaxed redundancy requirements, improvement of the aircraft safety and reliability, and 

simpler maintenance logistics [18]. Prognostic concepts, due to the variety of applications and the 

considerable impact they generate, have attracted great interest in the scientific and technological 

world and have been the subject of in-depth development and dissemination in scientific literature. 

2.  Aim Of The Work 

Electromechanical actuators have been spreading widely in the aerospace sector in recent years. 

[19,20], but their use in safety-critical applications is still constrained by their limited reliability [21]. 

Then, PHM is often an enabler for the use of EMAs in the aerospace industry. This work proposes a 

new FDI method based on genetic algorithms (GAs), for EMAs equipped with a permanent magnet 

sinusoidal motor (PMSM). This algorithm was developed and validated through a numerical EMA test 

bench, previously designed and modelled for this purpose by the authors. The goal is to propose an 

algorithm with precision at least comparable to the existing ones and which, at the same time, does not 

require large data sets for the formation of automatic learning tools or excessive computational 

burden. In addition, differently from most work available in the literature [7,20,21], our methodology 

can address multiple fault modes. An evaluation time in the order of minutes is considered acceptable 

for detecting slow-progressing faults. The proposed technique is then tested in different failure 

conditions to assess its robustness and field of applicability. According to [13], we considered four 

progressive failure modes: partial PMSM coil short circuit, backlash, dry friction, and drift of the 

proportional gain of the PID (Proportional-Integrative-Derivative) position control. Those failures 

have progressive evolution and are common for EMAs [15].  

3.  EMA Architecture and Considered Fault Modes 

In aircraft flight control systems, the current trend is to progressively replace traditional hydro-

mechanical and electro-hydraulic actuators with EMAs, according to the "More Electric Aircraft" [22] 

or "All-Electric Aircraft "[23] system architectures. These technologies are already implemented on 

last-generation aircraft (B-787, A320, etc.) [24,25]. Still, they are generally relegated to secondary 

FCS non-safety critical applications, or to the FCS of small UAVs [26]. As shown in Figure 1, an 

EMA generally includes a PMSM generating the mechanical power to, drives the rotational or linear 

motion of the final user through a reduction gearbox. PMSMs are characterized by a wide range of 

speed control [27,28]. The magnets and the armature winding are arranged so that the back-EMF takes 

the form of a sine wave; therefore, the control system must supply engines with sinusoidal signal [29]. 
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    (a)              (b) 

Figure 1: Simplified schematic (a) and diagram of the main components (b) of an EMA. 

 

Currently, PMSMs are the preferred type of electric motor in servomechanism applications. These 

motors are highly efficient and, compared to the simpler brushless motors (BLDC) [30], they produce 

less noise and are more durable. A network of sensors (including position, velocity, phase current, 

temperature) and dedicated actuation control electronics (ACE) close the position control loop. The 

ACE output drives the Power Electronics that converts the electrical power supply into the required 

three-phase power for the PMSM, regulating the frequency and amplitude of the motor three-phase 

sinusoidal currents as a function of command input and rotor angular position. These systems have 

found recent applications in aerospace systems. Their reliability and the various failure modes are not 

yet characterized with a satisfactory confidence. In addition, some failure modes, potentially 

compromising the whole system's efficiency, represent a critical issue involving EMA safety. 

Therefore, intense work has been done in recent years to bridge these gaps and, at the same time, to 

develop robust and effective techniques for prognostics to improve the overall safety of operations. 

3.1.  EMA Degradations and Fault Modes 

As already mentioned, EMAs cumulated flight hours are not enough to provide significant statistics 

about their most common failure modes. According to [31], the failure modes affecting EMAs can be 

typically summarized into four different categories: mechanical/structural failures, motor failures; 

control electronics failures, sensor failures. Unfortunately, not all the failure modes that can affect an 

electromechanical system can be faced with prognostic approaches. The types of faults characterized 

by sudden manifestations and extremely rapid evolution (e.g. breaking of a torsion bar of the flap 

transmission) do not allow identifying the incipient failure sufficiently in advance and, therefore, limit 

the typical benefits of the PHM approach. As suggested in [16], this study focuses on five particular 

progressive failure modes among the most likely in EMAs. In particular, we considered the effects of 

mechanical failures resulting from progressive wear, which manifests itself in an increase of backlash 

and friction, as well as two common PMSM motor failures, the coil-short circuits and the bearing gear 

generating rotor static eccentricity, together with a drift of the proportional gain of the controller. 

Indeed, electronic and sensor failures are no less relevant, although their failure precursors are often 

hard to identify and analyze as they usually occur very quickly, if not instantaneously [27]. 

4.  Proposed EMA Digital Twins 

This research proposes a prognostic tool able to identify early identifying degradation patterns of an 

EMA and esteem its actual health status. To evaluate the robustness and accuracy of this technique, 

the authors developed different multi-fidelity model types of the considered mechatronic system. 

4.1.  High Fidelity (HF) model 

The authors have proposed the high fidelity model used as the digital twin of the considered EMA in 

[31]. This versatile numerical test-bench has been developed with the MATLAB/Simulink® platform. 

The reference model (depicted in Figure 2), already proposed by [13], and enhanced according to 

[32,33], presents a very high level of detail. It can simulate the dynamic response taking into account 

the effects of the aforesaid progressive failures. In addition, this model is also sensitive to the effects 

of the analog-to-digital conversion of signals and electrical noise on signal lines. 
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The three-phase RL stator circuit, hysteresis current control, and magnetic coupling between stator 

and rotor are implemented using a physical-based approach, obtaining lumped-parameter modeling of 

the components. The response of the mechanical transmission is simulated through a second-order 

dynamic model with one degree of freedom (neglecting the transmission compliance), which takes 

into account different non-linearities, such as dry frictions (modeled as proposed by [34] and evaluated 

in [35]), backlashes and the mechanical end-stops. While not adopting more expensive representations 

based on electromagnetic and mechanical FEM, this approach still allows a satisfactorily accurate 

simulation of the EMA. It has been validated using data available in the literature and obtained from 

an experimental test-bench expressly created by the authors (and described in details in [36-38]). 

It should be noted that, despite having a reduced dimensionality and a lumped-parameter structure, 

the resulting HF model still requires quite heavy computational effort (in general two orders of 

magnitude above real-time) and, therefore, it is not suitable for iterative evaluation within FDI 

algorithms. This High Fidelity (HF) model represents the numerical reference model able to simulate 

the behavior of a real servomechanism in order to carry out an early identification of the symptoms 

that are considered to be the failure precursors of EMA degradations. 

4.2.  Low Fidelity (LF) model 

The authors developed the proposed monitoring model (shown in Figure 3) to perform the 

prognostic analysis through a simplification of the HF model introduced in the previous section. The 

most significant assumptions introduced to simplify the model structure interest the implementation of 

the electromagnetic subsystem. These simplifications aim fundamentally to reduce its complexity and 

dimensionality, making it computationally lighter and faster. In detail, the three-phases architecture of 

the PMSM is modeled through a simplified equivalent single-phase motor [39], including a more 

straightforward first-order RL dynamical model based upon equivalent electrical and mechanical 

characteristics (calculated on the base of the electrical features of the actual system). As suggested in 

[40], the three-phases motor currents are adopted as a signal to perform the system FDI of the real 

system because it is sensitive to several fault modes. Due to the simplifications, the LF monitoring 

model does not calculate three-phase current signals but an equivalent single-phase. Therefore the 

authors devised a procedure to calibrate the LF model by comparing the equivalent single-phase 

current with the corresponding quadrature current of the PMSM (computed through the Clarke-Park 

transformation applied to the three measured currents signals provided by the HF model [41]). 

 
Figure 2: Block diagram of the High Fidelity EMA digital twin [39]. 
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Figure 3: Block diagram of the EMA monitoring model (LF) with relative positioning of the 

equivalent single-phase current loop and form functions for simulating electrical faults. 

 

Indeed, both of these quantities are proportional to the torque of the motor. The complex modeling of 

PMSM and power electronics implemented in the HF model is replaced with a first-order one degree 

of freedom nonlinear model with a simplified hysteresis current loop. Electrical faults are simulated 

through a surrogate modeling approach. To this purpose, the authors introduced two shape functions 

[30] modulating equivalent stator phase resistance, motor back-EMF coefficient, and torque gain as a 

function of the rotor angular position. These shape functions do not represent a specific physical 

phenomenon. Still, they are designed to best approximate the behavior of the detailed model (but 

require a lower computational cost than the HF model). The two shape functions (related to 

eccentricity and short circuit failures affecting the real EMA) are a proper combination of sine waves 

dependent on failures magnitude, rotor angular position, and some calibration factors.  

The short circuit (SC) shape function is defined as: 

φSC = kFT {NA [1+kFS sin
2
(θe+π)] + NB [1+kFS sin

2
(θe+π/3)] + NC [1+kFS sin

2
(θe -π/3)]} (1) 

where NA, NB, NC are the fractions of undamaged windings of each phase, kFT and kFS are the global 

and single contribution calibration coefficients, and θe is the rotor electrical angular position. 

Instead, the shape function of static rotor eccentricity (ECC) [8] is formulated as follows: 

φECC = 1 – kE ζ [cos(θe + ϕe)] (2) 

where ζ and ϕe represent the amplitude and direction of the rotor static eccentricity, respectively, 

and kE is an additional eccentricity calibration coefficient. It should be noted that the shape functions 

coefficients (i.e. the global and single contributions of the short circuit calibration coefficients, the 

eccentricity calibration one, the equivalent torque gain, and the back-EMF coefficient) are initially 

undefined. A calibration process based on a Genetic Algorithm (GA) asses the said coefficients; the 

related objective function is based on a Normalized Root Mean Square Error (NRMSE) algorithm 

comparing the Current signals of HF and LF models. 

    
(a)              (b) 

Figure 4: Dynamic response of the high-fidelity reference model for a chirp position command (a)  

and comparison of the equivalent HF and LF output currents before model calibration (b). 
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5.  Proposed FDI Algorithm 

To perform the FDI prognostic analysis, the authors use a metaheuristic model-based approach that 

compares the real EMA (affected by an unknown fault combination) with the related monitor [32]. 

The monitor model must run many times with different parameters combinations and select those 

closest to the reference model: these variations of the main features of the monitor model in each 

simulation are made by suitable optimization algorithms. The Genetic Algorithm (GA) has been 

chosen as the optimization algorithm for this work. At each calculation step, the FDI algorithm 

executes the monitoring model with a certain fault vector k (the values of the faults considered in the 

optimization). Then, based on an appropriate Fitness Function (FF), the i-th LF solution is compared 

with the reference HF one, and the values of the elements of the fault vector k are updated accordingly. 

The Fitness Function (FF) is then computed with a Modified Total Least Squares Method [30,42], 

which is tolerant to small phase lags cumulated between the two EMA models, even in presence of 

steep gradients and abrupt changes in the equivalent current. Therefore, the proposed FF is defined as: 

𝑒𝑟𝑟 =∑
(𝐼1(𝑡0) − 𝐼2(𝑡0))

2

√𝑑𝐼1(𝑡0)
2

𝑑𝑡
+ 1𝑡

=∑
(𝐼𝐻𝐹(𝑡0) − 𝐼𝐿𝐹(𝑡0))

2

√𝑑𝐼𝐻𝐹(𝑡0)
2

𝑑𝑡
+ 1𝑡

 (3) 

where 𝐼𝐻𝐹 is the current of the HF model, 𝐼𝐿𝐹 is that of LF and 𝑡0 is a generic instant of the simulation. 

The overall percentage error of the prognostic analysis is estimated using the following formula: 

%𝑒𝑟𝑟 = 100 ∙ √∑(𝑘𝑖 − �̅�𝑖)
2

6

𝑖=1

+ �̅�6 ∙ (𝑘7 − �̅�7)
2
+ (𝑘8 − �̅�8)

2
 (4) 

where 𝑘𝑖 is the value of the i-th element of fault vector k evaluated by FDI algorithm and �̅�𝑖 is the 

actual value of the corresponding i-th fault parameter (applied to reference HF model). Typically, the 

system is simultaneously affected by several progressive failures (often of different entities). 

Therefore, we tested the proposed method in multiple fault conditions. The reference values of the 

failure vector are given randomly, and the results acquired are shown in the table below. 
 

 𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝟒 𝒌𝟓 𝒌𝟔 𝒌𝟕 𝒌𝟖  

Ref. 0.2383 0.5003 5.32∙ 𝟏𝟎−𝟕 0.4503 0.0404 0.0028 0.2785 0.5 %𝒆𝒓𝒓 

1 0.2051 0.4727 9.44∙ 10−4 0.4414 0.0445 0.0041 0.4334 0.4950 4.46 

2 0.2192 0.4858 5.59∙ 10−5 0.4421 0.0026 0.0067 0.1195 0.5096 4.67 

3 0.2132 0.4732 0.0015 0.4466 0.0221 0.0010 0.0874 0.4962 4.16 

4 0.2137 0.4813 2∙ 10−4 0.4504 0.0021 0.0067 0.1402 0.4970 4.96 

5 0.2123 0.4780 2.59∙ 10−4 0.4660 0.0087 0.0009 0.6436 0.4978 4.93 

 

Table 1: Example of prognostic analysis performed for multiple random error conditions  

(given the heuristic nature of the method, the same FDI was evaluated five times) 

6.  Conclusions 

A Genetic Algorithm solver-based Fault Detection and Identification technique has been suggested 

and verified. The results show that GA optimization is reliable and resilient when dealing with multi-

variable, multimodal situations. The presented algorithm has been tested on various fault 

circumstances to determine its usefulness and performance in scenarios as near to field operations as 

feasible. Computational time is acceptable for FDI conducted during routine maintenance but not for 

real-time fault estimation. The findings of the tests had a high level of reproducibility. Because GA's 

optimization techniques are non-deterministic, two executions starting from identical conditions give 

different outcomes. The suggested approach, on the other hand, showed to be reproducible and robust 

since equivalent findings were observed on different runs for the same test case (both with and without 

noise on the measured signals). The study of larger failure modes sets, the extension to different 

system layouts (such as electrohydraulic actuation systems), better optimization of models and 

algorithms (to reduce the computational requirements of the FDI strategy), and experimental 

validation of the proposed models will all be part of future developments on this research.  
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