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Abstract. In this work, the conceptual design methodology of a hybrid Unmanned Aerial 

Vehicle (UAV) – Unmanned Underwater Vehicle (UUV) platform is presented. As the mission 

complexity and the need for interoperability between different platforms grows more demanding 

by the day, hybrid platforms are becoming an essential solution. Hybrid UAV-UUVs can operate 

seamlessly and repeatedly in both the aerial and underwater environments, something that 

numerous animal species already execute in an optimized way. The design methodology starts 

with the review of the few available prototypes, creating initial design trends and continues with 

analytical calculations. These calculations are based on aircraft design textbooks and are 

modified to take into account the special characteristics of a hybrid platform, such as the means 

of transition between the water and the air. A Blended Wing Body (BWB) layout configuration 

is selected for the numerous aerodynamic advantages that it offers. The analytical calculations 

are then validated with the use of high fidelity CFD calculations. The results from the conceptual 

design phase indicate that the proposed methodology for hybrid UAV-UUV configurations 

provides a good design accuracy. Finally, the outcome of this methodology, which is a hybrid 

UAV-UUV platform is potentially the answer to the operational gap for missions that include 

both underwater and aerial environments. 
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1. Introduction 

The idea of Unmanned Vehicles (UVs) dates to the ancient times, with Archytas of Tarentum supposedly 

even creating the first known Unmanned Aerial Vehicle (UAV) around 350 BC. UVs and especially 

UAVs have seen a rapid development in the last decades, for both military and civil applications. 

Unmanned vehicles have many advantages, mainly arising from the lack of crew onboard. According 

to their operating environment, they are divided in aerial (UAV), underwater (UUV), surface (USV) and 

ground (UGV) vehicles. In nature, there are numerous animal species that execute multi-domain 

missions to hunt and survive, transitioning seamlessly between water and air. Bio-inspired designs and 

prototypes of manned multi-domain vehicles exist for over 100 years [1], but only the recent 

advancements of unmanned vehicles’ technology made the concept feasible [2]. Potential applications 

of an Unmanned Aerial-Underwater Vehicle (UAUV) vary from search and rescue, intelligence-

surveillance-reconnaissance (ISR) and border patrolling to ecosystem monitoring missions. 
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There are two categories of UAUVs, namely the ‘multi-rotor’ and the ‘fixed wing’ [1]. One of the 

first fixed wing UAUV design studies was conducted by a team of researchers in the Beihang University 

[3]. Their submersible UAV had coaxial counter rotating air propellers on the front and a single water 

propeller on the rear, retractable hollow wing and was designed to plunge-dive into the water and take-

off vertically. 

Air-to-water transition (ingress) may be performed either by water landing followed by a change in 

the buoyancy with a ballast system to reach the desirable mission depth or by plunge-diving. A series of 

partially featured UAUVs were developed in the Naval Research Laboratory of Washington, providing 

significant experimental results of the vehicle survivability during the plunge-diving ingress [4].On the 

other hand, water-to-air transition (egress), may be performed either with a fast, almost vertical, aquatic 

escape with the use of the propeller, or with an initial change of buoyancy to reach the water surface 

followed by a conventional hydroplane takeoff. An alternative egress procedure was demonstrated by 

Sidal et al. [5], who manufactured a prototype Aquatic Micro Aerial Vehicle (AquaMAV – figure 1a) 

that successfully achieved a fast egress using a water jet propulsion mechanism.  

 

Figure. 1 Three examples of UAUVs: (a) AquaMAV [6] (b) EagleRay [7] (c) NEZHA III [8]. 

All the above-mentioned studies, verify the feasibility of various UAUV aspects. However, repeated 

bidirectional transitions through the two mediums is still a challenging task. Stewart et al. [7] 

demonstrated a hybrid UAUV (EagleRay – figure 1b) that can perform the complete operational cycle 

multiple times. A key component was the floodable wing, which enabled the rapid egress of the vehicle 

during a vertical takeoff maneuver. Lu et al. [8] designed and built a prototype UAUV which merges 

the design concepts of the fixed wing, the multirotor and the buoyancy system of underwater gliders, in 

order to provide a solution to the poor endurance capabilities of the existing UAUVs. Their second 

prototype (NEZHA III – figure 1c) demonstrated an outstanding capability of a 50-meter-depth dive. 

The majority of the literature designs are conventional tube-and-wing configurations, mostly due to 

the simplicity for an initial proof-of-concept prototype. The novel but well-proven Blended Wing Body 

(BWB) layout though [9], could enhance the overall efficiency of the UAUV. Specifically, the BWB 

platform may offer up to 30% enhanced aerodynamic efficiency and a low wetted area to internal volume 

ratio, which may lead to a larger available volume used for additional payload or buoyancy tank.  

Regarding the design procedure, Crouse et al. [10] presented many useful aspects of a multi-domain 

vehicle. While some steps of the design procedure are also addressed in the literature [11], there is yet 

to be specified a complete, step-by-step conceptual design methodology that also integrates aspects of 

the multi-domain mission, such as the ingress and egress maneuvers. Therefore, in the present study, the 

design methodology of a BWB UAUV is presented, integrating calculations for the multi-domain needs. 

2. Conceptual design methodology 

The conceptual design methodology is mainly based on well-established aircraft design textbooks and 

UAV presizing methods [12, 13], with various considerations stemming from the submarine and UUV 

design methodologies [14]. An in-house tool was developed, in order to carry out the presizing 
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calculations for the conceptual layout study. Two different initial concept sketches are displayed in 

figure 2a while figure 2b presents the roadmap of the in-house tool.  

  

Figure 2. (a) Back of a napkin sketch with different propulsion systems (b) UAUV proposed 

conceptual design methodology. 

2.1. Mission profile and requirements 

The first step of the methodology is to specify the platform’s mission requirements, for both the aerial 

and the underwater environment. An extensive investigation of the available literature [3-8] was carried 

out to set realistic initial requirements for the mission of the UAUV. The top performance characteristics 

of these prototypes were set as mission requirements for the platform under study (table 1). 

Table 1. Mission Requirements for the under-study platform called Flying Manta Ray-1 (FMR-1). 

  Air Water 

Range 50 km 25 km 

Max Velocity 108 km/h 10,8 km/h 

Stall Velocity 43,2 km/h - 

Altitude/Depth 500 m 3 m 

Payload 1 kg 

Take Off Vertical Egress 

Landing Water surface Landing 

A typical UAUV mission initiates on the water surface near the shore with a vertical takeoff and 

climb towards the specified flight altitude. Through aerial cruise the vehicle rapidly approaches the 

desired underwater mission location. At this stage, a loiter may take place in order for the UAUV to 

accurately initiate the ingress procedure, avoiding unnecessary wave loads. During the underwater 

cruise and loiter, the main mission takes place (e.g. water sampling, sea mapping, identification of 

foreign objects) and finally the vehicle takes-off once more to return to base through air cruising. 
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2.2. Weight estimation 

The presizing begins with an initial estimation of the aircraft Gross Takeoff Weight (GTOW or W0), 

i.e. the aircraft total weight at the start of its mission. For a UAUV it is comprised of the payload weight 

Wp, the empty weight We and, in the case of electric propulsion, the battery weight Wb, so that: 

𝑊0  =  𝑊𝑝  + 𝑊𝑒  +  𝑊𝑏             (1) 

The payload weight refers to the total weight of the on-board electronic and surveillance equipment 

and is already defined by the mission requirements. The empty weight is estimated from the available 

historical trends and statistical data [9, 12] of lightweight UAVs. To achieve the desired underwater 

operating depth, a variable buoyancy method is employed by specifying specific volumes of the platform 

as ballasts. Regarding the initial estimation of the battery weight and the wing’s Aspect Ratio (AR), the 

available statistical data for UAUVs, presented in figure 3, are used. It can be observed that the AR 

rarely exceeds the value of 6, and this is attributed mainly to the intense pressure loads from which high 

AR wings suffer underwater.  

 

Figure 3. (a) Statistical battery weight fraction estimation (b) Statistical Aspect Ratio estimation. 

2.3. Wing and propulsion system sizing 

After the initial estimation of the takeoff weight, the Thrust-to-Weight ratio (T/W) and wing loading 

(W/S) have to be calculated. An equivalent term to the thrust-to-weight ratio, that may be used in the 

case of propeller or buoyancy driven engines, is the power loading, which is the weight of the vehicle 

divided by the engine horsepower (W/hp). This term is calculated for various mission segments and then 

the largest value is selected, to ensure that the UAUV has sufficient maximum power. The vertical egress 

(figure 4) is a highly energy-consuming maneuver and is a crucial part in the mission of UAUVs. 

            

Figure 4. Egress stages required for the maximum power calculation. 

To the best of the author’s knowledge, no presizing expressions concerning the egress power 

requirements exist in the bibliography. The egress procedure of the under-study platform is selected to 

be similar to the one demonstrated by Stewart et al. [7] and is divided in 4 stages, as presented in figure 

4. At the first stage of the egress, the vehicle is oriented vertically and only the aerial propeller is over 

the water surface. At the second stage the vehicle is completely out of water, but the wings have not 

Index Force

L Lift

T Thrust

D Drag

W 0 Vehicle Weight

WW Water Weight

F b Buoyancy
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been drained yet. At the third stage the wings are drained, and the speed is 80% of the stall speed. Finally, 

at the fourth stage, the vehicle has reached its stall velocity. Further calculations beyond this stage are 

considered unnecessary, as the UAUV will gradually rotate into horizontal orientation. The physics of 

vertical egress for a UAUV present some similarity to the hovering and climb of a helicopter. Thus, 

utilizing the momentum theory that calculates the power required for hover and climb of helicopters 

[12], and adjusting the variables accordingly for the case of a vertically moving, front mounted propeller 

vehicle, the authors propose equation (2) to calculate the horsepower required for egress (imperial units 

required as inputs).  

𝑃ℎ𝑝 = (𝑊 ∗ √
𝑊

2∗𝜌∗𝑆𝑑𝑖𝑠𝑐
+

𝑊∗𝑉𝑐𝑙𝑖𝑚𝑏

2
)

1

550∗𝜂𝑝𝑟𝑜𝑝
                        (2) 

In table 2, a comparison between the most power demanding mission segments of the UAUV is 

presented. It can be observed that the required power for vertical egress is slightly more than two times 

that of a typical rate of climb for a UAV. The maximum power is required during stage 2 of the egress 

maneuver, when the vehicle is out in the air but with wings still full of water. 

Table 2. Power required for various mission segments of the UAUV. 

  Maneuver Max Prequired [hp] 

Air 

Vertical Egress 2,55 

Rate of Climb 1,24 

Max velocity 0,35 

Water Max velocity 0,22 

 

2.4. Refined weight estimation 

Usually, weight prediction methods for aircrafts and UAVs are based on statistical data and empirical 

relations derived from conventional configurations [12]. However, the UAUV platform includes many 

design novelties, such as the BWB layout geometry (figure 5) and the Carbon Fiber Reinforced Polymer 

(CFRP) manufacturing methods, that have not been integrated in design textbooks yet and may result in 

a significant weight miscalculation. 

 

Figure 5. FMR-1 final geometry layout. 

Fudge Factors found in related literature [9] are employed to include these novelties in the refined 

weight estimation. These factors changed the final weight estimation of the vehicle by 15%, a significant 

deviation that could complicate the preliminary design stage. 
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3. Aerodynamic and Hydrodynamic Prediction 

3.1. Semi-empirical analysis 

The calculation of lift and drag coefficients both for the air and for the water are based on Roskam’s 

methodology [15] with the appropriate modifications to account for the BWB unique layout [16]. The 

external BWB geometry is designed with 3 different airfoil sections. Regarding the lift generation each 

airfoil has a main area of effect. The Zero-Lift coefficient (CL0) is calculated to include each airfoil’s 

area of effect, while the BWB body is considered as a single trapezoidal wing in this case (equation 3). 

The BWB layout presents also a reduced interference drag comparing to a conventional tube-and-wing. 

This is illustrated in the Zero-Lift-Drag coefficient (CD0) calculation (equation 4). 

𝐶𝐿0𝑤𝑓
= 𝐶𝐿0𝑚𝑎𝑖𝑛 𝑏𝑜𝑑𝑦

∗
𝑆𝑚𝑏

𝑆𝑤
+ 𝐶𝐿0𝑟𝑜𝑜𝑡

∗
𝑆𝑟𝑜𝑜𝑡

𝑆𝑤
+ 𝐶𝐿0𝑡𝑖𝑝

∗
𝑆𝑡𝑖𝑝

𝑆𝑤
   (3) 

𝐶𝐷0𝑤𝑓
= 𝐶𝐷0𝑙𝑜𝑓𝑡𝑖𝑛𝑔 𝑤𝑖𝑛𝑔

+ 𝐶𝐷0𝑐𝑙𝑒𝑎𝑛 𝑤𝑖𝑛𝑔
     (4) 

3.2. CFD methodology 

In order to calibrate and validate the in-house tool for the aerodynamic and hydrodynamic prediction, 

CFD calculations are performed. The CFD analysis was conducted using the ANSYS Fluent commercial 

software (ANSYS @ Scientific Research, Release 20.1). An unstructured grid was generated (figure 6), 

consisting of approximately 10,000,000 computational elements, which is the product of a 5-grid mesh 

independency study until a 2% difference in the CD value was reached. In each case, 18 inflation layers 

were implemented on the walls, the first of which was placed at 1.5x10-5 m, and resulted in an average 

y+ of 1, so that an accurate modeling of the near wall region boundary layer development is achieved, 

followed by the accurate calculation of the surface shear stresses.  

 

Figure 6. The UAUV computational mesh model. 

Regarding the turbulence modelling, a sensitivity analysis was conducted for the two mediums, air and 

water. The aerial cruise Reynolds is approximately 106, a region where Spalart-Allmaras [17] and k-ω 

SST [18] have both been widely used and validated to be accurate in aircraft applications [9]. The aerial 

inlet turbulence intensity was set at 1% and the eddy viscosity ratio at 0.2, representing typical flight 

conditions [9]. The underwater cruise Reynolds number, is approximately 2.5x105, falling in the range 

of transitional flow. The experimental data for UUVs or submarines is very limited in the available 

literature, making the validation of turbulence models extremely challenging. This is mostly caused by 

the difficulty of underwater tunnel experiments, including the direct dependency of the environmental 

conditions (e.g., wind, waves or water currents’ effect). Thus, a comparative study between the 
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Transitional SST turbulence model [19], which is proposed by the literature as the most accurate in the 

transitional region [20], Spalart-Allmaras and k-ω SST models is conducted for the water cruise 

segment. The underwater inlet turbulence intensity was set at 5%, a value derived from experimental 

data for the cruise depth and average water conditions [21], and the eddy viscosity ratio was set equal 

to 0.05 [22]. 

4. Results 

The aim of this study was to provide a complete conceptual design methodology, resulting to an accurate 

low-fidelity aerodynamic and hydrodynamic analysis of the platform. In figure 7, the coefficient of lift 

shows a good agreement between the semi-empirical tool and the CFD results, both in the air and in the 

water. The coefficient of drag (figure 8) shows good qualitative agreement in the air, while in the water 

a deviation appears between the in-house tool and the computational results at negative angles of attack. 

Quantitatively, the in-house tool seems to have an almost constant offset of about 0.005 from the CFD 

results in the air and an average of 0.015 in the water. This deviation may occur due to differences in 

the skin friction calculation of each turbulence model, that leads to an overestimation of the in-house 

tool’s CD compared to the one from the computational results. 

 

Figure 7. Coefficient of lift for air (a) and for water (b). 

 

Figure 8. Coefficient of drag for air (a) and for water (b). 

The CFD calculations seem to have small differences between the cases with different turbulence 

models. Thus the 1-equation Spalart-Allmaras model seems to be the most appropriate selection for any 

further conceptual CFD study in this platform, due to the significantly reduced computational time also, 

compared to the 2-equation k-ω SST and the 4-equation Transitional SST.  

5. Conclusions 

In the current study, a complete step-by-step conceptual design methodology for UAUVs is proposed. 

Aspects of the hybrid mission vehicles, such as the battery sizing or the estimation of the power required 

for the transition, have also been addressed. The good accordance between the in-house tool and the 
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high-fidelity CFD calculations, prove the suitability of the proposed methodology as a quick pre-sizing 

tool. The in-house tool could be further calibrated and constantly updated through the literature’s UAUV 

data. Finally, as a future work, a comparison between a conventional tube-and-wing and a BWB 

configuration, both sized from the in-house tool, should be conducted to examine more thoroughly the 

benefits of the BWB platform in the underwater environment. 
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