Paper The following article is Open access

ELADINE: sensor monitoring and numerical model approach for composite material wing box shape distortions prediction

, , , , , , , , , and

Published under licence by IOP Publishing Ltd
, , Citation A Torre-Poza et al 2022 IOP Conf. Ser.: Mater. Sci. Eng. 1226 012001 DOI 10.1088/1757-899X/1226/1/012001

1757-899X/1226/1/012001

Abstract

Out-of-Autoclave technologies are emerging as cost-effective alternatives to autoclave cure prepreg. However, their implementation in aerospace industry is still presenting many challenges. A common problem is the shape distortions that results in geometry mismatches with the tool. A way to avoid this and ensure a good final quality part is identifying the mechanisms that induce these deformations and optimize the manufacturing process of each component with the aim of reducing the production of faulty parts. The main objective of ELADINE project is to provide a method for shape distortions prediction on composite integral structures using an experimental-numerical approach. Different manufacturing parameters were monitored using Fiber Bragg Grating (FBG) sensors and DC-dielectric (DC) sensors and the resulting part geometry was examined by means of 3D coordinate analysis. The study performed for LRI (Liquid Resin Infusion) manufactured parts and the scenarios considered for the calibration of a Finite Element Method (FEM) based simulation tool are presented in the article. The resulting model will be implemented in a sub-scale demonstrator and, eventually, in a full 7-meter composite wing-box.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1757-899X/1226/1/012001