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Abstract. The paper presents an exact analytical method for the elastic analysis of steel-
concrete composite beams with partial interaction. Accepting the basic assumptions of the 
Newmark analytical model and adopting the axial force in the concrete slab as the main 
unknown, the second order nonhomogeneous differential equation of the steel-concrete 
composite element with partial interaction is derived. Further, the complete solutions for 
simply supported and fixed-ended composite beams subjected to concentrated and uniform 
loads respectively, are developed. The solution of the homogeneous equation is determined by 
imposing proper Dirichlet or Neumann boundary conditions depending on the static scheme of 
the element. The particular solutions are then derived for the considered loading conditions. It 
is shown that the internal axial force in concrete slab associated to composite beams with 
partial interaction can be expressed as a fraction of the axial force in concrete slab under full 
interaction through a non-dimensional function f(αL) which takes into account the 
connection’s stiffness, the mechanical properties and also the length of the element. Moreover, 
the solutions are included in a flexibility-based approach to derive the force-displacement 
relations of the beam element with partial interaction. For the resulted 2-noded beam-column 
element with 6DOF, the stiffness matrix is derived, showing that the partial composite action 
may be included at the element level by means of a series of correction factors applied to the 
standard full-interaction stiffness matrix coefficients. A numerical example is provided to 
demonstrate the accuracy and performance of the proposed method. Within the elastic range, 
the predicted load-midspan deflection curve is in very good agreement with both experimental 
and other numerical results retrieved from international literature. A parametric study was 
conducted to investigate the influence of the shear connection degree on the beam’s midspan 
deflection and the results were compared with those computed by using code provisions. 

1.  Introduction 
In the last decades, composite steel-concrete members have seen widespread use as parts of the 
structural system of multistorey buildings and bridges. A common type of composite beams is 
represented by a concrete slab supported by a cold formed steel profile interconnected with stud shear 
connectors. In this case, best use of concrete and steel materials is being made, as concrete is efficient 
in compression while the steel component is effective in tension. Under service load conditions, the 
ductile shear connectors allow relative longitudinal slippage between the connected components, 
therefore at cross sectional level, a discontinuity occurs in the strain distribution diagram at the steel-
concrete interface, as shown in Figure 1b. The evaluation of slip effects on both strength and stiffness 
properties is of current concern in the specialized literature although significant research has been 
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reported in the past decades [1-3]. Analytical procedures based on the key assumptions of Newmark’s 
model [4] have been proposed for the static behaviour of steel-concrete composite beams with partial 
interaction, terms that is defined by nonzero interlayer slip. In this paper, the second order differential 
equation of the steel-concrete element is derived adopting the basic hypothesis of the above-mentioned 
model. The equation is formulated in terms of axial force in the concrete slab under partial interaction 
and the closed-form solution is derived for two different loading scenarious. The solutions are then 
included in a flexibility-based approach to derive the force-displacement relations of the beam element 
with partial interaction. The elastic analysis of steel-concrete composite beams with interlayer slip is 
highly significant because it can be used to validate the code provisions related to deflection 
estimation and, moreover it provides specific information that may be cast within the framework of 
more complex inelastic analysis. Furthermore, the solutions presented herein may be used to enhance 
the analysis procedure presented in [1, 2] by considering an exact expression of the axial force in the 
concrete which explicitly includes the influence of the connection stiffness, the degree of shear 
connection, the cross sectional properties, the shear connectors spacing (uniform or triangular) and the 
element’s length. In this way, the analysis method takes advantage of using only one 2-noded beam-
column element with 6 DOF that can account for the main variables that dominate the structural 
behaviour of members and framed structures. 

2.  Differential equation of steel-concrete composite beams with partial interaction 
The governing differential equation of steel-concrete composite beams with partial (incomplete) 
interaction is derived adopting the basic assumptions of Newmark’s model [4]: 

(1) linear elastic behaviour of steel, concrete and shear connectors; 
(2) steel and concrete layers are continuously connected with constant shear modulus; 
(3) plane sections remain plane after flexural deformation (Bernoulli hypothesis); 
(4) frictional effects, uplift and shear deformations are neglected; 
(5) displacements and rotations are small. 

 
Figure 1. a. Infinitesimal steel-concrete composite element; b. Strain distribution. 

Consider the force distribution within the differential element shown in Figure 1a. By expressing 
the horizontal equilibrium in both components, the following relations can be written:  

 𝑑𝑁!
𝑑𝑥

= −𝑡;
𝑑𝑁"
𝑑𝑥

= −𝑡 (1) 

in which Nc and Ns are the internal axial forces in concrete slab and steel profile, respectively, whereas 
t is the interface shear flow and can be computed as:  
 

𝑡 =
𝑃!
𝑖!

 (2) 
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where, Pc is the shear force acting on a single shear connector and ic is the constant spacing between 
connectors. Under assumption (1), the shear force Pc can be computed as a function of shear stud 
stiffness K and corresponding slip s: 
 𝑃! = 𝐾 ⋅ 𝑠 (3) 
Combining relations (1), (2) and (3), the interlayer slip can be expressed as:  
 

𝑠 = −
𝑖!
𝐾
𝑑𝑁!
𝑑𝑥

 (4) 

Within the partial interaction conditions, a discontinuity occurs in the strain distribution diagram at the 
steel-concrete interface as shown in Figure 1b. The slip between steel and concrete component is 
quantified in terms of slip strain, 𝜀!"#$, as follows: 
 𝜀"#$% = 𝜀!_$'( − 𝜀"_")% (5) 
where 𝜀!_$'( and 𝜀"_")% are the strains within the concrete slab and steel profile at the interface and can 
be computed as the sums of axial and bending components: 
 

𝜀!_$'( = −
𝑁!
𝐸!𝐴!

+
𝑀!

𝐸!𝐼!
ℎ!
2

 
 

𝜀"_")% =
𝑁"
𝐸"𝐴"

−
𝑀"

𝐸"𝐼"
ℎ"
2

 
(6) 

In the above relations, Ec(s)Ac(s) and Ec(s)Ic(s) denote the axial and flexural stiffnesses of concrete and steel 
components calculated with respect to their geometric centroid. Moreover, under the above 
assumptions, the curvature can be defined as: 
 𝜑 =

𝑀!

𝐸!𝐼!
=
𝑀"

𝐸"𝐼"
=

𝑀! +𝑀"

𝐸!𝐼! + 𝐸"𝐼"
	 (7) 

Combining relations (5), (6) and (7) and knowing from equilibrium that Nc is equal to Ns, the slip 
strain becomes: 
 𝜀"#$% = −𝑁! 7

1
𝐸!𝐴!

+
1

𝐸"𝐴"
9 +

𝑀! +𝑀"

𝐸!𝐼! + 𝐸"𝐼"
𝑟	 (8) 

in which r is the distance between the geometric centroids of steel and concrete components. 
Expressing the total bending moment with respect to the steel profile centroid as: 
 𝑀 = 𝑀! +𝑀" +𝑁! ⋅ 𝑟	 (9) 
the slip strain can be further written as: 
 𝜀"#$% = −𝑁! 7

1
𝐸!𝐴!

+
1

𝐸"𝐴"
9 +

𝑀 −𝑁! ⋅ 𝑟
𝐸!𝐼! + 𝐸"𝐼"

𝑟 (10) 

Differentiating relation (4), the slip strain can also be expressed in the following form: 
 

𝜀"#$% =
𝑑𝑠
𝑑𝑥

= −
𝑖!
𝐾
𝑑*𝑁!
𝑑𝑥*

	 (11) 

Using equations (10) and (11), the second order differential equation of steel-concrete composite 
beams with partial interaction can be derived: 
 𝑑*𝑁!

𝑑𝑥*
−
𝐾
𝑖!

(𝐸𝐼)+

𝐸𝐴(𝐸𝐼),
𝑁! = −

𝐾
𝑖!

𝑟
(𝐸𝐼),

𝑀	 (12) 

in which: 
 1

𝐸𝐴
=
𝐸!𝐴! + 𝐸"𝐴"
𝐸!𝐴!𝐸"𝐴"

; 
 

(𝐸𝐼), = 𝐸!𝐼! + 𝐸"𝐼"; 
 

(𝐸𝐼)+ = (𝐸𝐼), + 𝑟*𝐸𝐴;	

(13) 

(EI)0 and (EI)∞ are the elastic flexural rigidities of the composite beam cross section without 
interaction and with full interaction, respectively. Furthermore, by introducing the following notations: 
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𝑘 =

𝐾
𝑖!
; 	 𝛼* = 𝑘

(𝐸𝐼)+

𝐸𝐴(𝐸𝐼),
;	 (14) 

the governing second order differential equation becomes: 
 𝑑*𝑁!(𝑥)

𝑑𝑥*
− 𝛼*𝑁!(𝑥) = −𝛼*

𝑟 ⋅ ?𝐸𝐴@
(𝐸𝐼)+

𝑀(𝑥)	 (15) 

The main unknown in equation (15) is the axial force in the concrete slab and it depends on the cross-
sectional properties, the level of interaction (through the non-dimensional parameter α) and on the 
bending moment value. Consequently, closed-form solutions can be analytically provided for different 
loading scenarious. 

Once the solution of the differential equation is determined, it may be used to evaluate the 
longitudinal slip by Eq. (4) and the transverse displacement by double integration of the following 
second order differential equation: 
 𝑑*𝑤

𝑑𝑥*
= −

𝑀
(𝐸𝐼)+

+
𝑟
𝑘

𝐸𝐴
(𝐸𝐼)+

𝑑*𝑁!
𝑑𝑥*

	 (16) 

which is obtained by combining relations (7), (9) and (15). Noticing that the first term of the sum in 
Eq. (16) represents the transverse displacement of the steel-concrete beam with full interaction, 𝑤($, 
the solution of the previous differential equation may be written in the following form: 
 

𝑤%$ = 𝑤($ +
𝑟
𝑘

𝐸𝐴
(𝐸𝐼)∞

𝑁! 	 (17) 

where 𝑤%$ is the elastic transverse displacement of the steel-concrete element under partial interaction. 
It is worth mentioning that Eq. (17) rigorously includes the partial interaction effects on the transverse 
displacement of the element by considering the actual shear stiffness of the connection, k. 

3.  Closed-form solution of the differential equation 
In this section, we provide the solution of the governing second order differential equation of steel-
concrete composite beams with partial interaction for two different loading schemes. The solution of 
the homogeneous equation, 𝑁!,,, may be expressed as follows: 
 𝑁!,, = 𝐶. ⋅ 𝑐ℎ(𝛼𝑥) + 𝐶* ⋅ 𝑠ℎ(𝛼𝑥)	 (18) 
where C1 and C2 are integration constants and are derived by imposing proper Dirichlet or Neumann 
boundary conditions depending on the static scheme of the beam, as presented in the following 
subsections. The particular solution 𝑁!,% depends on the external bending moment variation and, 
implicitly, on the loading conditions. 

3.1 Simply supported composite beam with a transverse force at midspan 

  

Figure 2. a. Simply supported beam subjected to concentrated load; b. Simply supported beam 
subjected to end bending moments and uniform distributed load. 

Consider the element shown in Figure 2a. The external bending moment M in terms of the distance x 
of the cross section from the left support can be expressed as: 

a. b. 
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𝑀(𝑥) = E

𝑃
2
𝑥 → 𝑥 ≤

𝐿
2

−
𝑃
2
𝑥 +

𝑃𝐿
2
→ 𝑥 ≥

𝐿
2

	 (19) 

For this case the particular and, consequently, the general solution depends on the position along the 
element:  
 

𝑁!/(𝑥) = 𝐶./ ⋅ 𝑐ℎ(𝛼𝑥) + 𝐶*/ ⋅ 𝑠ℎ(𝛼𝑥) +
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+

𝑃
2
𝑥 → 𝑥 ≤

𝐿
2
	

	

𝑁!0(𝑥) = 𝐶.0 ⋅ 𝑐ℎ(𝛼𝑥) + 𝐶*0 ⋅ 𝑠ℎ(𝛼𝑥) +
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+

J−
𝑃
2
𝑥 +

𝑃𝐿
2
K → 𝑥 ≥

𝐿
2
	

(20) 

It is worth mentioning that the particular solutions are introduced as first order polynomials in 
accordance with the bending moment expression. To determine the integration constants, the 
following Dirichlet boundary conditions are imposed in terms of axial force in the concrete slab: 
 𝑁!|12, = 0; 

 

𝑁!|123 = 0;	
(21) 

Since four constants must be determined, two compatibility conditions are further imposed at the 
midspan cross-section: 
 𝑁!′ N123*

= 𝑁!″N123*
; 

 

𝑑𝑁!/

𝑑𝑥
O
123*

=
𝑑𝑁!0

𝑑𝑥
O
123*

;	
(22) 

By solving the system with four equations given by conditions (21) and (22), the following 
expressions for the integration constants are obtained: 
 

𝐶./ =
1
𝛼
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+

𝑃
𝑐ℎ* P𝛼𝐿2 Q − 𝑐ℎ P

𝛼𝐿
2 Q

𝑠ℎ(𝛼𝐿)
;	

 

𝐶*/ = −
1
𝛼
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+

𝑃
2
;	

	

𝐶.0 =
1
𝛼
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+

𝑃
2 R

𝑐ℎ(𝛼𝐿) + 1
𝑠ℎ(𝛼𝐿)

−
𝑐ℎ(𝛼𝐿)

𝑠ℎ P𝛼𝐿2 Q
S ;	

	

𝐶*″ = −
1
𝛼
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)∞

𝑃
2 R

1 −
𝑠ℎ(𝛼𝐿)

𝑠ℎ P𝛼𝐿2 Q
S ;	

(23) 

Further, the general solution of the equation may be written as: 
 

𝑁!/(𝑥) = −
𝑃
𝛼
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+

𝑠ℎ 7
𝛼𝐿
2 9

𝑠ℎ(𝛼𝑥)
𝑠ℎ(𝛼𝐿)

+
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+

𝑃
2
𝑥, 𝑥 ≤

𝐿
2
;	

	

𝑁!0(𝑥) = −
𝑃
𝛼
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+

𝑠ℎ 7
𝛼𝐿
2 9

𝑠ℎ(𝛼𝐿 − 𝛼𝑥)
𝑠ℎ(𝛼𝐿)

+
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+ 7−

𝑃
2
𝑥 +

𝑃𝐿
2 9

, 𝑥 ≥
𝐿
2
;	

(24) 

Additionally, by introducing the axial force in the concrete slab under full interaction conditions, 
derived in [1, 2]: 
 

𝑁!((𝑥) = 𝑀(𝑥)
𝑟(𝐸𝐴)
(𝐸𝐼)+

;	 (25) 

the solutions of the governing differential equation can be further written in the following form: 



WMCAUS 2021
IOP Conf. Series: Materials Science and Engineering 1203  (2021) 032110

IOP Publishing
doi:10.1088/1757-899X/1203/3/032110

6

 
 
 
 
 
 

 
𝑁!/(𝑥) = 𝑁!(/ (𝑥) T1 −

𝑃
𝛼 ⋅ 𝑀(𝑥)

𝑠ℎ(𝛼𝑥)
𝑠ℎ(𝛼𝐿)

𝑠ℎ 7
𝛼𝐿
2 9

U , 𝑥 ≤
𝐿
2
;	

	

𝑁!0(𝑥) = 𝑁!(0 (𝑥) T1 −
𝑃

𝛼 ⋅ 𝑀(𝑥)
𝑠ℎ(𝛼𝐿 − 𝛼𝑥)
𝑠ℎ(𝛼𝐿)

𝑠ℎ 7𝛼
𝐿
29
U , 𝑥 ≥

𝐿
2
;	

(26) 

or, in condensed form: 
 𝑁!(𝑥) = 𝑁!((𝑥) ⋅ 𝑓(𝛼𝐿);	 (27) 
In this way, the axial force in the concrete slab under partial interaction is computed as a fraction of 
the axial force in the concrete slab under full interaction. The reduction factor 𝑓(𝛼𝐿) considers the 
degree of composite action and the cross-sectional properties. It is important to emphasize that for 
composite beams with full interaction 𝑓(𝛼𝐿) = 1 and consequently 𝑁!(𝑥) = 𝑁!((𝑥). Contrarily, for 
no interaction case, 𝑓(𝛼𝐿) = 0, therefore 𝑁!(𝑥) = 0. 

3.2 Simply supported composite beam subjected to end bending moments and uniform distributed load 

Similarly, as presented in the previous subsection, the expression of the axial force in the concrete slab 
under partial interaction is derived for the element shown in Figure 2b. The bending moment equation 
is given by the following expression: 
 

𝑀(𝑥) = −
𝑞
2
𝑥* + 7

𝑀$ +𝑀4
𝐿

+
𝑞𝐿
2 9

𝑥 −𝑀$ 	 (28) 

In this loading scenario, the particular solution of the governing second order differential equation is a 
second order polynomial and the general solution takes the following form: 
 

𝑁!(𝑥) = 𝐶. ⋅ 𝑐ℎ(𝛼𝑥) + 𝐶* ⋅ 𝑠ℎ(𝛼𝑥) +
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+ 7

𝑀$ +𝑀4
𝐿

𝑥 −𝑀$ −
𝑞
2
𝑥* +

𝑞𝐿
2
𝑥 −

𝑞
𝛼*9

	 (29) 

The integration constants can be determined by imposing as in [5] zero slip conditions at beam ends: 
 𝑠|12, = 0; 

 

𝑠|123 = 0;	
(30) 

which, in accordance with equation (4), are equivalent to the following Neumann boundary 
conditions: 
 𝑑𝑁!

𝑑𝑥
Y
12,

= 0; 
 

𝑑𝑁!
𝑑𝑥

Y
123

= 0;	
(31) 

With 𝐶. and 𝐶* determined enforcing conditions (31), the axial force in the concrete component is 
completely defined by the following expression: 
 

𝑁!(𝑥) =
1
𝛼
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+

T
𝑀$ +𝑀4

𝐿
𝑐ℎ(𝛼𝐿) − 1
𝑠ℎ(𝛼𝐿)

+
𝑞𝐿
2
𝑐ℎ(𝛼𝐿) + 1
𝑠ℎ(𝛼𝐿)

U ⋅ 𝑐ℎ(𝛼𝑥) −	

−
1
𝛼
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+ 7

𝑀$ +𝑀4
𝐿

+
𝑞𝐿
2 9

⋅ 𝑠ℎ(𝛼𝑥) +	

+
𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)+ 7

𝑀$ +𝑀4
𝐿

𝑥 −𝑀$ −
𝑞
2
𝑥* +

𝑞𝐿
2
𝑥 −

𝑞
𝛼*9

;	

(32) 

or: 
 

𝑁!(𝑥) = 𝑁!((𝑥) T1 −
𝑞

𝛼* ⋅ 𝑀(𝑥)
+

1
𝛼 ⋅ 𝑀(𝑥)

Z
𝑀$ +𝑀4

𝐿
𝑐ℎ(𝛼𝐿 − 𝛼𝑥) − 𝑐ℎ(𝛼𝑥)

𝑠ℎ(𝛼𝐿)
+	

+
𝑞𝐿
2
𝑐ℎ(𝛼𝐿 − 𝛼𝑥) + 𝑐ℎ(𝛼𝑥)

𝑠ℎ(𝛼𝐿)
[U ; 

(33) 

where, 𝑁!((𝑥) is the axial force in the concrete slab under full interaction conditions. 
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4.  Exact stiffness matrix 
In this section a flexibility-based approach is used to derive the force-displacement relations of a 2-
noded steel-concrete beam element with partial interaction. The effects of interlayer slip are explicitly 
captured by considering in the formulation the solution of the governing differential equation derived 
in the previous sections.  

 
Figure 3. Beam-Column element with rigid-body modes removed. 

For exemplification, consider the beam-column element shown in Figure 3, represented in the natural 
coordinates (i.e. a simply supported beam) subjected to end bending moments and uniform distributed 
load. The element flexibility matrix which relates the end displacements 𝒖5 to end actions, 𝒔5 can be 
derived by applying the Maxwell-Mohr rule for computation of generalized displacements. 
Specifically, the end rotation can be evaluated using the following expressions: 
 

𝜃$ = _
𝑀(𝑥)
(𝐸𝐼)6#

3

,

𝜕𝑀(𝑥)
𝜕𝑀$

𝑑𝑥 

 

𝜃4 = _
𝑀(𝑥)
(𝐸𝐼)6#

3

,

𝜕𝑀(𝑥)
𝜕𝑀4

𝑑𝑥 

(34) 

where 𝑀(𝑥) is the bending moment at the current location x along the member length and (𝐸𝐼)6# is the 
cross-sectional stiffness of the beam under partial interaction conditions and can be computed using 
the following equation as derived in [1]: 
 

(𝐸𝐼)6# =
(𝐸𝐼),

1 − 𝑟𝑁!(𝑥)𝑀(𝑥)

 (35) 

Eq. (34) can be further expressed as: 
 

𝜃$ = _
𝑀(𝑥) − 𝑟 ∙ 𝑁!(𝑥)

(𝐸𝐼),

3

,

P
𝑥
𝐿
− 1Q 𝑑𝑥 

 

𝜃4 = _
𝑀(𝑥) − 𝑟 ∙ 𝑁!(𝑥)

(𝐸𝐼),
𝑥
𝐿

3

,

𝑑𝑥 

(36) 

Supposing that the element is subjected to uniform distributed loads (Figure 3), the bending 
moment can be expressed as functions of nodal element forces as described by Eq (28) and the axial 
force in the concrete slab under partial interaction, 𝑁!(𝑥) is given by Eq. (32) and can be included in 
relations (36), thus the relationship between nodal displacements and nodal efforts becomes: 
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!
𝜃!
𝜃"
# =

⎣
⎢
⎢
⎢
⎢
⎢
⎡(

(𝜉 − 1)[𝜉 − 1 − 𝑟 ∙ 𝛽(𝐴 + 𝜉 − 1)]
(𝐸𝐼)# 𝑑𝑥

$

#

(
(𝜉 − 1)[𝜉 − 𝑟 ∙ 𝛽(𝐴 + 𝜉)]

(𝐸𝐼)# 𝑑𝑥
$

#

(
𝜉[𝜉 − 1 − 𝑟 ∙ 𝛽(𝐴 + 𝜉 − 1)]

(𝐸𝐼)#
𝑑𝑥

$

#

(
𝜉[𝜉 − 𝑟 ∙ 𝛽(𝐴 + 𝜉)]

(𝐸𝐼)#
𝑑𝑥

$

# ⎦
⎥
⎥
⎥
⎥
⎥
⎤

!
𝑀!
𝑀"
# + 𝜹% 	 (37) 

where 𝜹% are the nodal displacements resulting from loads acting along the member length and can be 
expressed as: 
 

𝜹5 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
_
(𝜉 − 1) g(1 − 𝑟𝛽) P𝑞𝐿2 𝑥 −

𝑞
2 𝑥

*Q − 𝑟𝛽𝐵 + 𝑟𝛽 𝑞
𝛼*j

(𝐸𝐼)0

3

,

_
𝜉 g(1 − 𝑟𝛽) P𝑞𝐿2 𝑥 −

𝑞
2 𝑥

*Q − 𝑟𝛽𝐵 + 𝑟𝛽 𝑞
𝛼*j

(𝐸𝐼)0

3

, ⎦
⎥
⎥
⎥
⎥
⎥
⎤

	 (38) 

in which:  
 

𝜉 =
𝑥
𝐿 ;	 𝛽 =

𝑟 ⋅ (𝐸𝐴)
(𝐸𝐼)∞ ;		

𝐴 =
1
𝛼 ∙ 𝐿

𝑐ℎ(𝛼𝐿 − 𝛼𝑥) − 𝑐ℎ(𝛼𝑥)
𝑠ℎ(𝛼𝐿)

;	 𝐵 =
1
𝛼
𝑞𝐿
2
𝑐ℎ(𝛼𝐿 − 𝛼𝑥) + 𝑐ℎ(𝛼𝑥)

𝑠ℎ(𝛼𝐿)
;	

(39) 

Eq (37) may be written in condensed form as: 
 𝒖5 = 𝒇5 ⋅ 𝒔5 + 𝜹5 (40) 
where 𝒇5 is the flexibility matrix of the steel-concrete composite element with partial interaction. The 
exact stiffness matrix of the composite element may be further computed by inverting the flexibility 
matrix and it can be emphasized that the partial composite action may be included at the element level 
by means of a series of correction factors applied to the standard full-interaction stiffness matrix 
coefficients. 

5.  Numerical example 
In this section, a numerical example is given to validate the analytical procedure described above and 
to highlight particular features concerning the behaviour of composite beams with partial interaction. 
The beam E1 experimentally tested by Chapman & Balakrishan [6] is considered. The geometric 
configuration of the beam is presented in Figure 4 and the main material and shear connection 
properties can be found in [2]. Based on the number of shear connectors and the spacing between 
them, the shear connection stiffness, k, has been determined using Eq. (14). 

 
Figure 4. Beam E1 layout 

 

In Figure 5a comparative load mid-span deflection curves are shown. As it can be seen, the elastic 
behaviour of the composite beam predicted with the proposed analytical model is in very close 
agreement with those published by Queiroz et al. [3] in which the behaviour is explicitly modelled by 
using advanced three-dimensional finite element software. Compared to the experimental results, both 
numerical [3] and analytical procedures slightly underestimate the initial stiffness of the composite 
element. 
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Figure 5. a. Load-deflection curves; b. Deflection-shear connection degree curves. 

Figure 5b depicts the mid-span deflections evaluated using Eq. (17) for shear connection levels 
ranging from 0 (no interaction) to 1 (full shear connections) and those calculated according to 
Eurocode-4 [7] provisions for propped and unpropped construction. In the proposed approach, for 
each shear connection level the associated stiffness has been determined based on the appropriate 
number of shear connectors and the distance between them. The load level was set to 250 kN to assure 
the elastic behaviour of the beam. It can be noted that the Eurocode 4 provisions asses in an 
approximate manner the deflections of composite beams with partial shear connection. In this study, 
the deviations between the exact and code-based deflections are ranging from 3.5% to 22.4% and from 
3.2% to 31.9% for propped and unpropped construction, respectively. 

  
 

Figure 6. a. f(αL)-degree of shear connection curve; b. f(αL) variation along the beam length 

The following study presents the variation of the f(αL) function, which reduces the axial force in 
the concrete slab under full interaction conditions to obtain the axial force under partial interaction 
conditions, with respect to the shear connection degree (the element length is assumed to be constant). 
Using Eq. (26), the value of f(αL) function was computed at mid-span (extreme bending moment) for 
different shear connection ratios (Figure 6a). It can be observed that by increasing the shear 
connection degree η and, consequently the connection stiffness k, the value of the f(αL) function 
approaches the theoretical value of 1(one) which correspond to full interaction case (no relative slip). 
It is worth noting that for full shear connection (η=1) the associated f(αL) value is less than 1 (one), 
which indicates that the degree of shear connection (related to the strength-based property) is different 
from that of interaction (related to the stiffness-based property). The variation of the f(αL) function 
along the beam length under full shear conditions (η=1) is shown in Figure 6b. It can be observed that 
the values of f(αL) are ranging between 0.7 and 1.0, hence a constant value can be used to compute the 
approximate deflection of steel-concrete composite beams as accepted by most relevant standards.  
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6.  Conclusions 
This paper presented an exact analytical method for the elastic analysis of steel-concrete composite 
beams under partial interaction conditions. Adopting the basic assumptions of Newmark’s model, the 
governing second order differential equation has been derived and closed-form solutions have been 
provided for two loading scenarious. The study emphasized that the axial force in the concrete slab 
under partial interaction can be evaluated as a fraction of the axial force in the concrete slab under full 
interaction through a reduction factor 𝑓(𝛼𝐿) which explicitly considers the shear stiffness of the 
connection and the cross-sectional properties. This conclusion may be used to formulate approximate 
methods of quantifying the effect of the partial composite action in linear and non-linear analysis of 
composite beams. Moreover, the solutions have been used to derive the force-displacement relations 
of a 2-noded beam-column element with 6DOF under partial interaction in a flexibility-based 
approach. The stiffness matrix was derived, and it is emphasized that the partial composite action may 
be included at the element level by means of a series of correction factors applied to the standard full-
interaction stiffness matrix coefficients. The analytical model can be further developed to consider 
non-uniform shear connector distribution by simply dividing the beam according with variable spacing 
and treating each segment as beams with uniform distribution.  
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