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Abstract. The study is focused on development of an accurate and cost effective function 
approximation techniques for modelling functionally graded materials. Different grading 
functions (exponential, power law) are expanded into Haar wavelet series based on higher order 
Haar wavelet approach. The proposed techniques can be utilized also for modelling load cases, 
complex boundary conditions, grading functions etc. 

 

1. Introduction 
Recently, the Haar wavelet method (HWM) and higher order Haar wavelet method (HOHWM) have 
been utilized with success for solving wide class of engineering problems [1-7]. The differential 
governing equations of the structures, solved using HWM or HOHWM, involve often set of functions 
describing loading, boundary conditions, varying stiffness, geometry, density and material properties. 
In order to provide comprehensive approach, it is reasonable to treat these function in terms of Haar 
wavelets i.e. to expand these functions into Haar wavelet series [8-10]. Most commonly the functions 
accompanying the governing equations are expanded into Haar wavelets. However, here is reason to be 
careful, because it is shown in [11] that in the case where function is expanded into Haar wavelets the 
order of convergence with respect to mesh/resolution is equal to one. Since the order of convergence of 
the HWM is equal to two [12] and HOHWM higher, such an approach may lead to loss of accuracy of 
the solution, especially in the case of use of HOHWM. Thus, more accurate Haar wavelet based 
approach is needed to overcome possible loss of accuracy of the solution.  
Current study is focused on approximation of grading functions of the functionally graded (FG) 
materials using higher order Haar wavelet method based function approximation. The HOHWM was 
introduced by authors for solving differential equations as improvement of the HWM [13]. Based on 
HOHWM, the higher order approach for functions approximation was introduced in [14]. Herein the 
latter higher order function approximation technique is extended for modelling grading functions of the 
FG materials. As result the generalized algorithm can be used for solving governing equations covering 
different grading functions (exponential, power law, four parameter functions, etc.). In the current study 
the second order derivatives of the grading functions are expanded into Haar wavelets providing fourth 
order convergence with respect to mesh.  
 
 
2. Haar wavelets 
The Haar wavelets are introduced as [1]  
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,                                              (1) 

where 1 kmi , jm 2 is a maximum number of square waves deployed in interval  BA,   and 

the parameter k   indicates the location of the particular square wave, 

                      1( ) 2 ,i A k x        2 ( ) (2 1) ,i A k x          3( ) 2( 1) ,i A k x       
                                                   ,/ mM )2/()( MABx  , JM 2 . (2) 

 
The parameters 𝑗 and 𝐽 stand for the resolution and maximum resolution, respectively. Any square 
integrable and finite function in the interval  BA,  can expanded into Haar wavelets. 

3. Approximation of grading functions of the FG materials 
Based on idea of higher order Haar wavelet method introduced by authors in [13] an accurate function 
approximation is derived for four simple and widely used grading functions described in the following 
subsections. 

3.1. Exponential grading function 
Due to its simplicity, the exponential grading function is widely used. In the case of axially graded 
materials the exponential functions are utilized commonly for describing the elasticity modulus 𝐸(𝑥) 
and the density 𝜌(𝑥) as 
 
                                         𝐸(𝑥) = 𝐸(0) ∗ 𝑒ଶఉ௫/௅,  𝜌(𝑥) = 𝜌(0) ∗ 𝑒ଶఉ௫/௅. (3) 
 
In (3) 𝐿 is a length of the beam and 𝛽 is a grading parameter, 𝐸(0) and  𝜌(0) stand for the reference 
values of the elasticity modulus and density at 𝑥 = 0. However, in order to provide unique approach for 
handing different grading functions, herein the volume fraction of the first constituent 𝑉ଵ  is expanded 
into Haar wavelet. The modulus of elasticity and the density can be expressed in terms of volume 
fraction 𝑉ଵ as 
 
                                      𝐸 = (𝐸ଵ − 𝐸ଶ)𝑉ଵ + 𝐸ଶ ,    𝜌 = (𝜌ଵ − 𝜌ଶ)𝑉ଵ + 𝜌ଶ, (4) 
 
where the indexes 1 and 2 refers to the constituents (materials) 1 and 2, respectively. In the case of 
exponential grading function (3), the volume fractions of the constituents (materials) 𝑉ଵ and 𝑉ଶ can be 
derived as 

                                      𝑉ଵ =
௘మഁି௘మഁೣ/ಽ

௘మഁିଵ
 , 𝑉ଶ =

௘మഁೣ/ಽିଵ

௘మഁିଵ
. (5) 

 
The higher order Haar wavelet expansion can be introduced as 
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where ib and )(xhi stand for the wavelet coefficients and Haar functions, respectively. In the case of 

𝑛 = 0,1,2… the functions itself, its first derivative, second derivative, etc. is expanded into series of the 
Haar functions. In the following the value 𝑛 = 2 is utilized in order to provide fourth order convergence 
 

                                                                 
௘మഁି௘మഁೣ/ಽ

௘మഁିଵ
 = ∑ 𝑏𝑖𝑝2,𝑖

+ 𝑑1𝑥 + 𝑑2
2𝑀
𝑖=1 .                (7) 
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In (7) 𝑝ଶ,௜ stand for second order integrals of the Haar functions (1). Two integration constants 𝑑ଵ and 
𝑑ଶ can be determined by satisfying equation (5) in boundary points 𝑥 = 0 and 𝑥 = 𝐿, respectively. The 
Haar wavelet expansion coefficients 𝑏௜ can be determined by satisfying the equation (7) in grid points. 
In the case of uniform mesh used the grid points 𝑥௟ are given as 

            

𝑥௟ =
ଶ௟ିଵ

ସெ
,    𝑙 = 1, … ,2𝑀. (8) 

 
The volume fraction 𝑉ଵ(𝑥) be calculated for each coordinate 𝑥 value by substituting the coefficients 𝑏௜, 
integration constants 𝑑ଵ and 𝑑ଶ in (7). The volume fraction 𝑉ଶ(𝑥) can be evaluated as 1 − 𝑉ଵ(𝑥). 
The detailed expressions of the coefficients 𝑏௜, integration constants 𝑑ଵ and 𝑑ଶ are omitted for 
conciseness sake. 

3.2. Power law grading function 
The power law relation for describing FG materials is given as [15] 
 

                          𝐸 = (𝐸ଵ − 𝐸ଶ) ቀ1 −
௫

௅
ቁ

௞
+ 𝐸ଶ ,   𝜌 = (𝜌ଵ − 𝜌ଶ)(1 −

௫

௅
)௞+𝜌ଶ. (9) 

 
In (9) 𝑘 is a grading parameter. Despite to presence of one parameter in both, exponential and power law 
grading function, the power law function is more flexible/general. In exponential grading function (3) 
the parameter 𝛽 value is determined by mechanical characteristic value at the point 𝑥 = 𝐿. However, in 
the case of power law grading function (9) the values of the mechanical characteristics in boundary points 
are provided and the parameter 𝑘 remains as design parameter. Varying the value of the parameter 𝑘 
allow to obtain different distributions of the mechanical characteristics. The higher order Haar wavelet 
expansion can be employed for the volume fraction of the constituent (material) 1 as  
 

                                             ቀ1 −
௫

௅
ቁ

௞
= ∑ 𝑏௜𝑝ଶ,௜ + 𝑑ଵ𝑥 + 𝑑ଶ

ଶெ
௜ୀଵ .  (10) 

 
Similarly, to above, the second order derivative of the volume fraction function is expanded into 
Haar wavelet and grading function is expressed in terms of second integrals of Haar functions. 
The elasticity modulus and density can be evaluated by substituting (10) in (9). 

3.3. Four parameter power law grading function 
In order to provide higher flexibility for describing the distribution of the FGM, the following four 
parameter model is considered for approximation of the volume fraction 𝑉ଵ [15] 
 

                                                   𝑉ଵ = 𝐶 ∗ ൤1 −
௫

௅
+ 𝛼 ቀ

௫

௅
ቁ

ఉ

൨
ఊ

, (11) 

 
where parameters 𝐶, 𝛼 , 𝛽 and 𝛾 control the volume fraction 𝑉ଵvariation through the length of 
the axially graded structure. The higher order Haar wavelet expansion is given as  
 

                                       𝐶 ∗ ൤1 −
௫

௅
+ 𝛼 ቀ

௫

௅
ቁ

ఉ

൨
ఊ

= ∑ 𝑏𝑖𝑝2,𝑖
+ 𝑑1𝑥 + 𝑑2

2𝑀
𝑖=1 . (12) 

 
Note, that four parameter grading function can be utilized for design optimization of FGM structures.  
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3.4. Four parameter trigonometric grading function 
Four parameter trigonometric grading function can be considered as an alternative to four parameter 
power law grading function. The corresponding volume fraction 𝑉ଵ can be expressed as [15] 
 

                                               𝑉ଵ = 𝐶 ∗ ቂ
ଵ

ଶ
−

ఈ

ଶ
𝑠𝑖𝑛 ቀ

௡గ௫

௅
+ 𝜙ቁቃ

ఊ

. (13) 

 
Expanding the second order derivative of the volume fraction (13) into Haar wavelet series and 
integrating twice one obtains approximation of the function 𝑉ଵ as 
 

                                  𝐶 ∗ ቂ
ଵ

ଶ
−

ఈ

ଶ
𝑠𝑖𝑛 ቀ

௡గ௫

௅
+ 𝜙ቁቃ

ఊ

= ∑ 𝑏𝑖𝑝2,𝑖
+ 𝑑1𝑥 + 𝑑2

2𝑀
𝑖=1 . (14) 

 
The approximations used for above four grading functions are second order polynomials including 
global and local terms.  
 

4. Numerical results  
The values of the grading functions, its absolute errors and convergence rates corresponding to the 
exponential, power law and four parameter grading functions are given in tables 1 and 2, respectively. 
In Table 1 the approximation results are given for exponential and power law grading functions.  
 

Table 1. Approximation for exponential and power law grading functions  
(𝛽 = −0.549306, 𝑘 = 1.5). 

 𝑉ଵ(𝑥) =
𝑒2𝛽 − 𝑒2𝛽𝑥/𝐿

𝑒2𝛽 − 1
 𝑉ଵ(𝑥) = ቀ1 −

𝑥

𝐿
ቁ

௞

 

2M 
Function value at 

point  x=L/2 
Converg. 

rate 
Absolute 

error 
Function value 
at point  x=L/2 

Absolute 
error 

Converg. 
rate 

4 0.365989778  3.57E-05 0.353652500  9.91E-05 

8 0.366023040 3.8946 2.40E-06 0.353549500 4.6608 3.92E-06 

16 0.366025287 3.9954 1.50E-07 0.353553000 3.3869 3.74E-07 

32 0.366025428 3.9996 9.40E-09 0.353553400 3.9854 2.36E-08 

64 0.366025437 3.9999 5.87E-10 0.353553400 3.9969 1.48E-09 

128 0.366025437 3.9994 3.67E-11 0.353553400 3.9990 9.26E-11 
 
 

Table 2. Approximation for four parameter grading functions  
(𝐶 = 1, 𝛼 = 1, 𝛽 =  = 2, 𝜙 =

𝜋

2
, 𝛾 = 1, 𝜂 = 1.2). 

 
𝑉ଵ(𝑥) = 𝐶 ∗ ቈ1 −

𝑥

𝐿
+ 𝛼 ቀ

𝑥

𝐿
ቁ

𝛽

቉



 𝑉ଵ(𝑥) = 𝐶 ∗ ቈ
1

2
−

𝛼

2
𝑠𝑖𝑛 ቀ

𝑛𝜋𝑥

𝐿
+ 𝜙ቁ቉

𝛾

 

2M 
Function value at 

point  x=L/2 
Converg. 

rate 
Absolute 

error 
Function value at 

point  x=L/2 
Absolute 

error 
Converg. 

rate 

4 0.561810700  6.89E-04 0.653466700  1.04E-03 
8 0.562454300 3.9150 4.57E-05 0.654447800 4.1021 6.07E-05 
16 0.562497100 3.9975 2.86E-06 0.654504800 4.0206 3.74E-06 
32 0.562499800 4.0000 1.79E-07 0.654508300 4.0050 2.33E-07 
64 0.562500000 4.0000 1.12E-08 0.654508500 4.0013 1.45E-08 
128 0.562500000 3.9999 6.99E-10 0.654508500 4.0003 9.08E-10 
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It can be observed from Table 1 that the order of convergence tends to four as expected and the absolute 
error reduces up to 10ିଵଵ. The results in Tables 2 are similar, high accuracy and fourth order rate of 
convergence is achieved. Thus, the obtained results can be used for HWM and also HOHWM (s=1) 
where convergence is not higher than four (convergence rate of the HOHWM is equal to 2+2s, where s 
is method parameter).  
In future study the functions approximations developed, are planned to apply for structural analysis and 
design optimization of engineering structures [16-21] and production processes [22-25].  An another 
challenging research area is fractional calculus [26]. From one side, fractional calculus allows to 
describe a number of real world problems more naturally/objectively. For example, modelling the 
behavior of the viscoelastic material. From other side, the mainstream numerical methods cannot by 
applied directly for fractional calculus, but need adaption, refinement. The proposed function 
approximation technique can be applied for expansion of the fractional derivatives included in 
differential equations of integer order derivatives used for approximation of fractional derivatives. 
Solution of fractional differential and integro-differential equations is foreseen. 
   

5. Conclusions 
An accurate function approximation technique is proposed for modelling grading functions of the FG 
materials, based on idea of higher order Haar wavelet method. According to proposed approach the 
second order derivative of the grading function is expanded into Haar wavelet series. The two 
complementary integration constants are determined by using function values on boundary. As result 
fourth order convergence with respect to mesh was achieved. The obtained results are accurate enough 
utilizing with HWM and HOHWM (s=1). The proposed approach covers obviously further increase of 
accuracy by increasing the order of derivative expended into Haar wavelet series in formula (6).  
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